首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 508 毫秒
1.
Candida species are major causes of invasive and mucocutaneous fungal infections. Various recognition pathways and effector mechanisms are involved in triggering intrinsic, innate and adaptive host immune responses to these fungi. Invasive candidiasis may involve almost any internal organ or anatomic site and is a significant cause of morbidity and mortality in immunocompromised individuals, including, in particular, those with primary immunodeficiency disorders (PIDs) affecting phagocytic cells. Other PIDs characterized by an impairment of IL-17 T cell-mediated immunity confer predisposition to mucocutaneous Candida infections, with Candida albicans in particular. We discuss here inborn errors of immunity leading to an impairment of IL-17-mediated host defense and the occurrence of mucocutaneous candidiasis.  相似文献   

2.
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.  相似文献   

3.
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.  相似文献   

4.

Purpose of review

We aimed to review invasive fungal infections complicating primary immunodeficiencies (PID).

Recent findings

Several PID predisposing to fungal infections were recently deciphered. CARD9 deficiency selectively predisposes to fungal infections including candidiasis, aspergillosis, deep dermatophytosis, and phaeohyphomycosis, with frequent central nervous system location, especially after Candida infection. Patients with heterozygous STAT1 gain-of-function mutations are mostly predisposed to chronic mucocutaneous candidiasis but may also display, even though less frequently, invasive fungal infections. Aspergillosis complicating STAT3 deficiency is also a major concern in patients with lung cavities. Antifungal prophylaxis is recommended in this first group of patients. Previously well-reported PID are known to predispose to fungal infections, such as genetic defects impairing the IL-12/IFN-γ axis can predispose to cryptococcosis, and dimorphic fungal infections.

Summary

Patients developing invasive fungal infections including candidiasis, aspergillosis, cryptococcosis, phaeohyphomycosis, pneumocystosis, or disseminated infections caused by dimorphic fungi, without known underlying risk factors, should be explored immunogenetically in order to diagnose primary immunodeficiencies, even in the absence of previous other infectious episodes.
  相似文献   

5.
Most fungal infections in humans occur in the setting of iatrogenic immunosuppression or HIV infection. In the absence of these factors, fungi cause mild, self-limited infections that typically involve mucocutaneous surfaces. Hence, when persistent or recurrent mucocutaneous infections (chronic mucocutaneous candidiasis [CMC]) or invasive fungal infections (IFIs) develop in a “normal” host, they are indicative of genetic defects causing innate or adaptive immune dysfunction. In this review, recent developments concerning genetic and immunologic factors that affect the risk for IFIs and CMC are critically discussed.  相似文献   

6.
Chronic mucocutaneous candidiasis (CMC) is a heterogeneous group of primary immunodeficiency diseases characterized by chronic and recurrent Candida infections of the skin, nails, and oropharynx. Gain-of-function mutations in STAT1 were very recently shown to be responsible for autosomal-dominant or sporadic cases of CMC. The reported mutations have been exclusively localized in the coiled-coil domain, resulting in impaired dephosphorylation of STAT1. However, recent crystallographic analysis and direct mutagenesis experiments indicate that mutations affecting the DNA-binding domain of STAT1 could also lead to persistent phosphorylation of STAT1. To our knowledge, this study shows for the first time that a DNA-binding domain mutation of c.1153C>T in exon 14 (p.T385M) is the genetic cause of sporadic CMC in two unrelated Japanese patients. The underlying mechanisms involve a gain of STAT1 function due to impaired dephosphorylation as observed in the coiled-coil domain mutations.  相似文献   

7.
We recently reported the genetic cause of autosomal dominant chronic mucocutaneous candidiasis (AD-CMC) as a mutation in the STAT1 gene. In the present study we show that STAT1 Arg274Trp mutations in the coiled-coil (CC) domain is the genetic cause of AD-CMC in three families of patients. Cloning and transfection experiments demonstrate that mutated STAT1 inhibits IL12R/IL-23R signaling, with hyperphosphorylation of STAT1 as the likely underlying molecular mechanism. Inhibition of signaling through the receptors for IL-12 and IL-23 leads to strongly diminished Th1/Th17 responses and hence to increased susceptibility to fungal infections. The challenge for the future is to translate this knowledge into novel strategies for the treatment of this severe immunodeficiency.  相似文献   

8.
9.
Human primary immunodeficiencies of type I interferons   总被引:4,自引:0,他引:4  
Type I interferons (IFN-alpha/beta and related molecules) are essential for protective immunity to experimental infection by numerous viruses in the mouse model. In recent years, human primary immunodeficiencies affecting either the production of (UNC-93B deficiency) or the response to (STAT1 and TYK2 deficiencies) these IFNs have been reported. Affected patients are highly susceptible to certain viruses. Patients with STAT1 or TYK2 deficiency are susceptible to multiple viruses, including herpes simplex virus-1 (HSV-1), whereas UNC-93B-deficient patients present isolated HSV-1 encephalitis. However, these immunological defects are not limited to type I IFN-mediated immunity. Impaired type II IFN (IFN-gamma)-mediated immunity plays no more than a minor role in the pathogenesis of viral diseases in these patients, but the contribution of impaired type III IFN (IFN-lambda)-mediated immunity remains to be determined. These novel inherited disorders strongly suggest that type I IFN-mediated immunity is essential for protection against natural infections caused by several viruses in humans.  相似文献   

10.
Delineating the infection susceptibility of primary immunodeficiencies allows insight into host immunity. Filamentous mold infections are seen most frequently in chronic granulomatous disease, a neutrophil disorder characterized by impaired superoxide production. Mucocutaneous candidiasis occurs in disorders of impaired interleukin (IL)-17 and IL-22 signaling, such as seen in autosomal dominant hyper-IgE (Job’s) syndrome and in disorders with autoantibodies to these cytokines. The endemic dimorphic fungi are in part controlled by disorders of the IL-12/interferon (IFN)-γ pathway, such as IFN-γ receptor and STAT1 defects. Understanding the pathways involved in these primary immunodeficiency disorders will also provide insight into these infections in secondary immunodeficiencies and allow guidance for novel therapies.  相似文献   

11.
Interleukin (IL)-17 is a proinflammatory cytokine which induces differentiation and migration of neutrophils through induction of cytokines and chemokines including granulocyte-colony stimulating factor and CXCL8/IL-8. IL-17-producing CD4(+) T cells (Th17) have pivotal role in pathogenesis of autoimmune diseases. IL-17 is also involved in protective immunity against various infections. IL-17 has important role in induction of neutrophil-mediated protective immune response against extracellular bacterial or fungal pathogens such as Klebsiella pneumoniae and Candida albicans. Importance of IL-17 in protection against intracellular pathogens including Mycobacterium has also been reported. Interestingly, not only CD4(+) T cells but atypical CD4(-)CD8(-) T cells expressing T cell receptor (TCR) gammadelta produce IL-17, and IL-17 producing cells participate in both innate and acquired immune response to infections. Furthermore, neutrophil induction may not be the only mechanism of IL-17-mediated protective immunity. IL-17 seems to participate in host defense through regulation of cell-mediated immunity or induction of antimicrobial peptides such as beta-defensins. In this review, we summarize recent progress on the role of IL-17 in immune response against infections, and discuss possible application of IL-17 in prevention and treatment of infectious diseases.  相似文献   

12.

Purpose of Review

In this review, we focus on the inborn errors of immunity known to render the host susceptible to fungal infections, including candidias, aspergillosis, dermatophytosis, phaeohyphomycosis, pneumocystosis, fusariosis, cryptococcosis, and endemic mycoses.

Recent Findings

Classically, the burden of fungal disease in humans is believed to be carried by patients with a secondary immunodeficiency, either due to malignancy, to chemotherapy, to an immunocompromised state post hematopoietic stem cell transplantation, or to treatment with anti-cytokine therapies. However, in the last decade, the study of patients affected by fungal infections without any overt risk factors has led to the unraveling of several monogenic defects of human immunity to fungi. The study of these inborn errors of immunity has added vastly to our comprehension of antifungal immunity. For example, the role of IL-17 immunity in human defense against mucocutaneous candidiasis has been extensively characterized through the analysis of IL-17F, IL-17RA, IL-17Rc, ACT1, RORγT and, indirectly, CARD9 deficiency.

Summary

Many monogenic causes of susceptibility to superficial and/or invasive fungal infections have been recently unraveled. Most of these inborn errors of immunity associate with a specific type of fungal infection, and such a defect should always be suspected and sought in patients affected by fungal infection in the absence of predisposing factors.
  相似文献   

13.
14.
Filler SG 《Cytokine》2012,58(1):129-132
Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections.  相似文献   

15.
16.
Human fungal pathogens such as the dimorphic Candida albicans or the yeast-like Candida glabrata can cause systemic candidiasis of high mortality in immunocompromised individuals. Innate immune cells such as dendritic cells and macrophages establish the first line of defense against microbial pathogens and largely determine the outcome of infections. Among other cytokines, they produce type I IFNs (IFNs-I), which are important modulators of the host immune response. Whereas an IFN-I response is a hallmark immune response to bacteria and viruses, a function in fungal pathogenesis has remained unknown. In this study, we demonstrate a novel mechanism mediating a strong IFN-β response in mouse conventional dendritic cells challenged by Candida spp., subsequently orchestrating IFN-α/β receptor 1-dependent intracellular STAT1 activation and IFN regulatory factor (IRF) 7 expression. Interestingly, the initial IFN-β release bypasses the TLR 4 and TLR2, the TLR adaptor Toll/IL-1R domain-containing adapter-inducing IFN-β and the β-glucan/phagocytic receptors dectin-1 and CD11b. Notably, Candida-induced IFN-β release is strongly impaired by Src and Syk family kinase inhibitors and strictly requires completion of phagocytosis as well as phagosomal maturation. Strikingly, TLR7, MyD88, and IRF1 are essential for IFN-β signaling. Furthermore, in a mouse model of disseminated candidiasis we show that IFN-I signaling promotes persistence of C. glabrata in the host. Our data uncover for the first time a pivotal role for endosomal TLR7 signaling in fungal pathogen recognition and highlight the importance of IFNs-I in modulating the host immune response to C. glabrata.  相似文献   

17.
Interleukin (IL)-12/IL-23 signal transduction-deficient individuals with genetic defects in IL12RB1 or IL12B often suffer from unusual mycobacterial and Salmonella infections. Here we discuss recent questions that have arisen from clinical observations that cast doubt on the necessity of IL-12/IL-23 signaling in controlling infections with intracellular bacteria. Alternative IL-12/IL-23-dependent, interferon-gamma-independent pathways of immunity to intracellular bacteria are also discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号