首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Catalase (CAT, EC 1.11.1.6) is an important enzyme in antioxidant defense system protecting animals from oxidative stress. Freshwater fish Oreochromis niloticus were exposed for 96 h to different concentrations of Ag(+), Cd(2+), Cr(6+), Cu(2+) and Zn(2+), known to cause oxidative stress, and subsequently CAT activities in liver, kidney, gill, intestine and brain were measured. In vivo, CAT was stimulated by all metals except Ag(+) in the liver and the highest increase in CAT activity (183%) resulted from 1.0 mg Cd(2+)/L exposure, whereas 0.5 mg Ag(+)/L exposure resulted in a sharp decrease (44%). In tilapia kidney, cadmium and zinc had no significant effects on CAT activity, whereas 0.1 mg Cr(6+)/L exposure caused a decrease (44%). Cadmium and zinc did not significantly affect the CAT activity in gill; however, 0.5 mg Ag(+)/L exposure caused an increase (66%) and 1.5 mg Cr(6+)/L exposure caused a decrease (97%) in CAT activity. All metals, except Cu(2+)(41% increase), caused significant decreases in CAT activity in the intestine. In brain, 1.0 mg Zn(2+)/L resulted in an increase in CAT activity (126%), while 1.5 mg Ag(+)/L exposure caused a 54% decrease. In vitro, all metals -- except Ag(+) and Cu(2+) in kidney -- significantly inhibited the CAT activity in all tissues. Results emphasized that CAT may be considered as a sensitive bioindicator of the antioxidant defense system.  相似文献   

2.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   

3.
Fifty-three strains of actinomycetes resistant to heavy metals were isolated from the Salí River in northwest Argentina. Screening procedures that involve solid and liquid synthetic media containing Cd(2+), Cu(2+), or Hg(2+) allowed the selection of six strains. These strains showed a quantitative sorption of Cd(2+) and Cu(2+) by more than 98% of the initial metal concentrations (0.1, 0.5, and 1.0 mM) tested.  相似文献   

4.
聂志刚  王艳  李韶山 《植物学报》2009,44(1):117-123
以拟南芥原生质体为实验体系, 研究不同浓度的3种重金属离子对拟南芥原生质体的毒性和DNA损伤的差异。结果表明, 用1-5 mmol.L-1的Zn2+、Cd2+ 和Cu2+分别处理的拟南芥原生质体, 2 小时内活力逐渐下降, 并表现出明显的浓度依赖性;与相同浓度的Cd2+ 和Cu2+ 相比, Zn2+对拟南芥原生质体活力的影响程度较小, 表现出较低的毒性。单细胞凝胶电泳检测发现,用0.1-0.8 mmol .L-1的Zn2+、Cd2+ 和Cu2+ 分别处理拟南芥原生质体30 分钟, 以OTM值表示的原生质体DNA损伤量随重金属离子浓度的增加而递增; 相同浓度(0.5 mmol.L-1)的3种重金属离子相比, Zn2+对原生质体的遗传毒性明显低于Cu2+ 和Cd2+。综合原生质体活力和DNA损伤的单细胞凝胶电泳检测结果, 发现Zn2+对拟南芥原生质体的遗传毒性较低, 而Cd2+ 和Cu2+的遗传毒性较高。本研究建立的拟南芥原生质体实验体系, 结合运用单细胞凝胶电泳技术, 能够快速、灵敏地检测重金属对植物细胞的遗传毒性。  相似文献   

5.
Heavy metal resistance patterns of Frankia strains   总被引:4,自引:0,他引:4  
The sensitivity of 12 Frankia strains to heavy metals was determined by a growth inhibition assay. In general, all of the strains were sensitive to low concentrations (<0.5 mM) of Ag(1+), AsO(2)(1-), Cd(2+), SbO(2)(1-), and Ni(2+), but most of the strains were less sensitive to Pb(2+) (6 to 8 mM), CrO(4)(2-) (1.0 to 1.75 mM), AsO(4)(3-) (>50 mM), and SeO(2)(2-) (1.5 to 3.5 mM). While most strains were sensitive to 0.1 mM Cu(2+), four strains were resistant to elevated levels of Cu(2+) (2 to 5 mM and concentrations as high as 20 mM). The mechanism of SeO(2)(2-) resistance seems to involve reduction of the selenite oxyanion to insoluble elemental selenium, whereas Pb(2+) resistance and Cu(2+) resistance may involve sequestration or binding mechanisms. Indications of the resistance mechanisms for the other heavy metals were not as clear.  相似文献   

6.
A general model for biosorption of Cd2+, Cu2+ and Zn2+ by aerobic granules   总被引:12,自引:0,他引:12  
Aerobic granules are microbial aggregates with a strong and compact structure. This study looked into the feasibility of aerobic granules as a novel type of biosorbent for the removal of individual Cd(2+), Cu(2+) and Zn(2+) from aqueous solution. Based on the thermodynamics of biosorption reaction, a general model was developed to describe the equilibrium biosorption of individual Cd(2+), Cu(2+) and Zn(2+) by aerobic granules. This model provides good insights into the thermodynamic mechanisms of biosorption of heavy metals. The model prediction was in good agreement with the experimental data obtained. It was further demonstrated that the Langmuir, Freundlich and Sips or Hill equations were particular cases of the proposed model. The biosorption capacity of individual Cd(2+), Cu(2+) and Zn(2+) on aerobic granules was 172.7, 59.6 and 164.5 mgg(-1), respectively. These values may imply that aerobic granules are effective biosorbent for the removal of Cd(2+), Cu(2+) and Zn(2+) from industrial wastewater.  相似文献   

7.
1. The effects of various ions on the Mg(2+)- and Mn(2+)/ammonium sulphate-activated RNA polymerase activities of isolated liver nuclei were studied. 2. The Mg(2+)-activated RNA polymerase reaction was inhibited by more than 60% by Cd(2+), SeO(3) (2-), Be(2+), Cu(2+), Co(2+), Ca(2+) and La(3+), all at 1mm concentrations. 3. The Mn(2+)/ammonium sulphate-activated RNA polymerase reaction was strongly inhibited by Hg(2+), Cd(2+), Cu(2+) and Ag(+). The effect of Hg(2+), Cd(2+) and Ag(+) was relieved by cysteine or mercaptoethanol. 4. Inhibition by Cu(2+) was not affected by addition of DNA, and was relieved only partially by EDTA or histidine. 5. No changes of RNA polymerase activities were observed in nuclei isolated from the liver of rats treated with copper albuminate.  相似文献   

8.
9.
ALA-D (EC 4.2.1.24) is the first cytosolic enzyme in the haem metabolic pathway. Some metals compete with its major cofactor Zn(2+), modifying both enzyme structure and function. Our purpose was to contribute to the understanding of the biochemical role of metals such as Pb(2+), Cd(2+), Cu(2+), Mg(2+), Zn(2+), Na(+), K(+) and Li(+) on ALA-D, using chicken embryos as experimental model. Mg(2+) and Zn(2+) showed enzyme activation in yolk sac membrane (YSM) (113% at 10(-5) M Mg(2+) and from 10(-4) M Zn(2+)), and slight inactivation in liver. Cd(2+) and Cu(2+) caused a non allosteric inhibition in both tissues (100% from 10(-4) M). Surprisingly Pb(2+) was not such a strong inhibitor. Interference of cations during the Schiff base formation in enzymatic catalysis process is explained considering their Lewis acid-base capacity, coordination geometry and electron configuration of valence. Interactions among monovalent cations and biochemical substances are governed chiefly by its electrostatic potential. 0.1 M K(+) and 0.4 M Na(+) produced 30% of enzymatic inhibition by the interference on interactions among the functional subunits. Li(+) activated the YSM enzyme (130% at 10(-5) M) due to a more specific interaction. This study may contribute to elucidate for the first time the possible structural differences between the YSM and liver enzymes from chicken embryo.  相似文献   

10.
Abeta binds Zn(2+), Cu(2+), and Fe(3+) in vitro, and these metals are markedly elevated in the neocortex and especially enriched in amyloid plaque deposits of individuals with Alzheimer's disease (AD). Zn(2+) precipitates Abeta in vitro, and Cu(2+) interaction with Abeta promotes its neurotoxicity, correlating with metal reduction and the cell-free generation of H(2)O(2) (Abeta1-42 > Abeta1-40 > ratAbeta1-40). Because Zn(2+) is redox-inert, we studied the possibility that it may play an inhibitory role in H(2)O(2)-mediated Abeta toxicity. In competition to the cytotoxic potentiation caused by coincubation with Cu(2+), Zn(2+) rescued primary cortical and human embryonic kidney 293 cells that were exposed to Abeta1-42, correlating with the effect of Zn(2+) in suppressing Cu(2+)-dependent H(2)O(2) formation from Abeta1-42. Since plaques contain exceptionally high concentrations of Zn(2+), we examined the relationship between oxidation (8-OH guanosine) levels in AD-affected tissue and histological amyloid burden and found a significant negative correlation. These data suggest a protective role for Zn(2+) in AD, where plaques form as the result of a more robust Zn(2+) antioxidant response to the underlying oxidative attack.  相似文献   

11.
Transition metal ions, although maintained at low concentrations, play diverse important roles in many biological processes. Two assays useful for the rapid quantification of a range of first-row transition metal ions have been developed. The colorimetric assay extends the 4-(2-pyridylazo)resorcinol assay of Hunt et al. (J. Biol. Chem. 255, 14793 (1984)) to measure nanomole quantities of Co(2+), Ni(2+), and Cu(2+) as well as Zn(2+). The fluorimetric assay takes advantage of the coordination of a number of metal ions (Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)) by Fura-2 and can also be used to measure nanomole quantities of these ions. The assays developed here have the advantage of not requiring the extensive sample preparation necessary for other methodologies, such as atomic absorption spectroscopy and inductively coupled plasma emission spectroscopy (ICPES), while being comparable in accuracy to the detection limits of ICPES for the first-row transition metal ions. To demonstrate the effectiveness of these assays, we determined the affinity of carbonic anhydrase II (CA II), a prototypical zinc enzyme, for Ni(2+) and Cd(2+). These data indicate that CA II binds transition metals with high affinity and is much more selective for Zn(2+) over Ni(2+) or Cd(2+) than most small-molecule chelators or other metalloenzymes.  相似文献   

12.
Monoclonal antibodies of IgM class, specific to IDA-Zn were used for evaluating their Zn(2+) binding efficiency in the presence of trace metal ions such as Cr(3+) Cr(6+), Cu(2+) and Cd(2+). In the present work, antibody raised against the hapten IDA-Zn(II) was pre-incubated with different metal ions and the binding capacity to the specific hapten was tested using ELISA and immobilized metal ion affinity chromatography (IMAC) techniques. IMAC was carried out with the free antibody and antibody pre-incubated with selected heavy metal ions using Sepharose IDA-Zn(2+) column and the same samples were tested using a hapten specific ELISA with non-protein hapten carrier. Different effects were observed after pre-incubation with metal ions. Cr(3+) exhibited synergistic binding where as antagonism was detected with Cd(2+). The synergistic effect observed with Cr(3+) suggests involvement of binding sites other than that of zinc and conformational changes that result from Cr(3+) binding. It is probable that, this binding event also increases the accessibility of the zinc binding sites on IgM. On the same lines, the antagonism observed with Cd(2+) could be attributed to structural changes resulting in reduced accessibility to zinc binding sites. In case of Cr(6+), no appreciable change in binding to IDA-Zn was observed while Cu(2+) showed competitive binding.  相似文献   

13.
14.
The effects of the heavy metals Cu, Cd, Ni, Pb and Zn on [(14)C]methylamine and [(14)C]aminoisobutyric acid uptake were studied in the free-living fungus Paxillus involutus and in mycorrhizal and non-mycorrhizal birch roots. The uptake of both N sources by P. involutus was inhibited by the five metals tested. However, Cu(2+) and Pb(2+) had a greater inhibitory effect. Non-competitive inhibitions were determined between heavy metals and [(14)C]methylamine uptake. [(14)C]Methylamine uptake was reduced by one third by 2 μM Cd(2+) and Cu(2+) in non-mycorrhizal roots, whereas that of mycorrhizal roots was not affected. However, it was reduced by 30 to 80% by 200 μM Cd(2+) and Cu(2+) irrespective of the mycorrhizal status. [(14)C]Aminoisobutyric acid uptake in mycorrhizal roots was not significantly affected by Cd(2+) and Cu(2+), whereas that of non-mycorrhizal roots was decreased by 77% at 200 μM Cu(2+). [(14)C]Aminoisobutyric acid uptake was 4.5 to 6 fold higher in mycorrhizal roots, compared with non-mycorrhizal roots, even under metal exposure. The high efficiency of N acquisition by mycorrhizal birch seedlings under metal exposure might be regarded as a mechanism of stress avoidance.  相似文献   

15.
We compared action of Cd(2+), Hg(2+), and Cu(2+) on isolated rat liver mitochondria in the absence of added Ca(2+) and P(i). The heavy-metal ions produced dose-dependently: (1) enhanced membrane permeabilization manifested in mitochondrial swelling and activation of basal respiration, (2) inhibition of uncoupler-stimulated respiration, and (3) membrane potential dissipation. Among the metals, Cu(2+) exhibited maximal stimulatory effect on basal respiration and minimal inhibitory action on DNP-uncoupled respiration whilst Cd(2+) promoted the strongest depression of uncoupled respiration and the largest swelling in NH(4)NO(3) medium. Dithiothreitol induced a basal respiration release if added after high [Cd(2+)] and [Hg(2+)], and the stimulation was CsA-insensitive.  相似文献   

16.
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.  相似文献   

17.
CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd(2+), was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd(2+) tolerance of these cells. Yeast cells expressing the non-functional mutant Asp(398)Ala could grow on selective medium containing up to 100 microM Cd(2+), whereas those expressing the functional protein could not grow in the presence of 1 microM Cd(2+). The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd(2+) accumulation in the reticulum lumen. CadA is also known to transport Zn(2+), but Zn(2+) did not protect the cells against Cd(2+) poisoning. In the presence of 10 microM Cd(2+), transformed yeasts survived by rapid loss of their expression vector.  相似文献   

18.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

19.
20.
Ni(II) and Zn(II) M-DNA formation and denaturation of double-stranded DNA (dsDNA) by Cd(2+) were monitored by surface plasmon resonance (SPR). When exposed to immobilized 30 bp 50% GC dsDNA, Zn(2+) and Ni(2+) were found to give signals indicative of a conformational change at pH 8.5 but not 7.5, while Mg(2+) and Ca(2+) caused small changes at both pHs. The concentrations that gave 50% of the maximum responses were 0.06 and 0.50 mM for Zn(2+) and Ni(2+), respectively. At pH 8.5, Cd(2+) denatured over 40% of the dsDNA, while other metals denatured less than 5% of the DNA. Smaller pH-dependent signals were induced by Zn(2+), Ni(2+) or Cd(2+) with 50% GC single-stranded DNA (ssDNA), and with a homopolymer of d(T)30. Homopolymers d(A)30 and d(C)30 showed small signals that were largely independent of pH in the presence of Zn(2+) or Ni(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号