首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spores of Bacillus subtilis, conidia of Aspergillus niger, versicolor and ochraceus andcells of Deinococcus radiodurans have been exposed in the dark at two locations (at about 23°S and 24°S) in the Atacama Desert for up to 15 months. B. subtilis spores (survival 15%) and A. niger conidia (survival 30%) outlived the other species. The survival of the conidiaand spores species was only slightly poorer than that of thecorresponding laboratory controls. However, the Deinococcus radiodurans cells did not survive the desertexposure, because they are readily inactivated at relativehumidities between 40 and 80% which typically occurduring desert nights. Cellular monolayers of the dry sporesand conidia have in addition been exposed to the full sunlight for up to several hours. The solar fluences causing 63% loss in viability (F37-values) have been determined.These F37-values are compared with those determined atother global locations such as Punta Arenas (53°S), Key Largo (25°N) or Mainz (50°N) during the same season. Thesolar UVB radiation kills even the most resistantmicroorganisms within a few hours due to DNA damages. Thedata are also discussed with respect to possible similaritiesbetween the climatic conditions of the recent Atacama Desertand the deserts of early Mars.  相似文献   

2.
Nearly half the earth's surface is occupied by dryland ecosystems, regions susceptible to reduced states of biological productivity caused by climate fluctuations. Of these regions, arid zones located at the interface between vegetated semiarid regions and biologically unproductive hyperarid zones are considered most vulnerable. The objective of this study was to conduct a deep diversity analysis of bacterial communities in unvegetated arid soils of the Atacama Desert, to characterize community structure and infer the functional potential of these communities based on observed phylogenetic associations. A 454-pyrotag analysis was conducted of three unvegetated arid sites located at the hyperarid-arid margin. The analysis revealed communities with unique bacterial diversity marked by high abundances of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria, phyla that are dominant in many biomes. A 16S rRNA gene library of one site revealed the presence of clones with phylogenetic associations to chemoautotrophic taxa able to obtain energy through oxidation of nitrite, carbon monoxide, iron, or sulfur. Thus, soils at the hyperarid margin were found to harbor a wealth of novel bacteria and to support potentially viable communities with phylogenetic associations to non-phototrophic primary producers and bacteria capable of biogeochemical cycling.  相似文献   

3.
This brief introduction is intended to orientate the reader with respect to the principal environmental and historical features of the Atacama Desert, the oldest and continuously driest non-polar temperate desert on Earth. Exploration of its microbiology is relatively recent but both fundamental and applied research activities have grown dramatically in recent years reflecting the substantial interest in its microbial diversity, ecology, biogeochemistry, natural product potential and Mars-analogue properties of this unique and invigorating environment.  相似文献   

4.
Life at the edge     
Extremophiles: Microbial Life in Extreme Environments (1998). Koki Horikoshi and William D. Grant (Eds). Wiley-Liss, 311 pp. hardback; ISBN 0 471 02618 2 ($134.50)  相似文献   

5.
The world’s highest levels of surface ultraviolet (UV) irradiance have been measured in the Atacama Desert. This area is characterized by its high altitude, prevalent cloudless conditions, and a relatively low total ozone column. In this paper, we provide estimates of the surface UV (monthly UV index at noon and annual doses of UV-B and UV-A) for all sky conditions in the Atacama Desert. We found that the UV index at noon during the austral summer is expected to be greater than 11 in the whole desert. The annual UV-B (UV-A) doses were found to range from about 3.5 kWh/m2 (130 kWh/m2) in coastal areas to 5 kWh/m2 (160 kWh/m2) on the Andean plateau. Our results confirm significant interhemispherical differences. Typical annual UV-B doses in the Atacama Desert are about 40% greater than typical annual UV-B doses in northern Africa. Mostly due to seasonal changes in the ozone, the differences between the Atacama Desert and northern Africa are expected to be about 60% in the case of peak UV-B levels (i.e. the UV-B irradiances at noon close to the summer solstice in each hemisphere). Interhemispherical differences in the UV-A are significantly lower since the effect of the ozone in this part of the spectrum is minor.  相似文献   

6.
Fungi are generally easily dispersed, able to colonise a wide variety of substrata and can tolerate diverse environmental conditions. However, despite these abilities, the diversity of fungi in the Atacama Desert is practically unknown. Most of the resident fungi in desert regions are ubiquitous. Some of them, however, seem to display specific adaptations that enable them to survive under the variety of extreme conditions of these regions, such as high temperature, low availability of water, osmotic stress, desiccation, low availability of nutrients, and exposure to high levels of UV radiation. For these reasons, fungal communities living in the Atacama Desert represent an unknown part of global fungal diversity and, consequently, may be source of new species that could be potential sources for new biotechnological products. In this review, we focus on the current knowledge of the diversity, ecology, adaptive strategies, and biotechnological potential of the fungi reported in the different ecosystems of the Atacama Desert.  相似文献   

7.
The Atacama desert in Chile is one of the driest and most lifeless environments on Earth. It rains possibly once a decade. NASA examined these soils as a model for the Martian environment by comparing their degradation activity with Martian soil and looking for “the dry limit of life”. The existence of heterotrophic bacteria in Atacama soil was demonstrated by DNA extraction and by the isolation of microorganisms. So far, however, no data have been available about the metabolic activities in these soils due to the limitations of the existing methodologies when applied to desert soils. Calorimetry was used to obtain information on the metabolic and thermal properties of eleven soil samples collected at different sites in the Atacama desert. Differential scanning calorimetry and isothermal calorimetry were employed to determine the pyrolysis properties of the carbon‐containing matter and to measure biomass and microbial metabolism. They were compared to other soil properties such as total carbon and nitrogen, carbon to nitrogen ratio and pH. There was measurable organic matter in nine of the eleven samples and the heat of pyrolysis of those soils was correlated to the carbon content. In five of the eleven samples no biomass could be detected and the existence of basal microbial metabolism could not be established because all samples showed endothermic activity, probably from inorganic reactions with water. Six samples showed microbial activation after the addition of glucose. Carbon content, nitrogen content and the microbial activity after glucose amendment were correlated to the altitude and to the average minimum temperature of the sampling sites calculated from meteorological data. The detectable microbial metabolism was more dissipative with increasing altitude and decreasing temperature.  相似文献   

8.
The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO3?, are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.  相似文献   

9.
Ridley AJ 《Cell》2011,145(7):1012-1022
Cell migration requires sustained forward movement of the plasma membrane at the cell's front or "leading edge." To date, researchers have uncovered four distinct ways of extending the membrane at the leading edge. In lamellipodia and filopodia, actin polymerization directly pushes the plasma membrane forward, whereas in invadopodia, actin polymerization couples with the extracellular delivery of matrix-degrading metalloproteases to clear a path for cells through the extracellular matrix. Membrane blebs drive the plasma membrane forward using a combination of actomyosin-based contractility and reversible detachment of the membrane from the cortical actin cytoskeleton. Each protrusion type requires the coordination of a wide spectrum of signaling molecules and regulators of cytoskeletal dynamics. In addition, these different protrusion methods likely act in concert to move cells through complex environments in?vivo.  相似文献   

10.
The Atacama Desert of northern Chile is considered one of the most arid and extreme environment on Earth. Its core region was described as featuring “Mars-like” soils that were at one point deemed too extreme for life to exist. However, recent investigations confirmed the presence of diverse culturable actinobacteria. In the current review, we discuss a total of 46 natural products isolated to date representing diverse chemical classes characterized from different actinobacteria isolated from various locations in the Atacama Desert. Their reported biological activities are also discussed.  相似文献   

11.
12.
Interests in the Atacama Desert of northern Chile until very recently were founded on its mineral resources, notably nitrate, copper, lithium and boron. Now this vast desert, the oldest and most arid on Earth, is revealing a microbial diversity that was unimagined even a decade or so ago; indeed the extreme hyper-arid core of the Desert was considered previously to be completely devoid of life. In this Perspective article we highlight pioneering research that, to the contrary, establishes the Atacama as a combination of rich microbial habitats including bacteria that influence biogeochemical transformations in the desert and others that are propitious sources of novel natural products. Many of the Atacama’s habitats are especially rich in actinobacteria, not necessarily as dense populations but extensive in taxonomic diversity and capacities to synthesize novel secondary metabolites. Among the latter, compounds have been characterized that express a range of antibiotic, anti-cancer and anti- inflammatory properties to which a variety of bioinformatics and metabolic engineering tools are being applied in order to enhance potencies and productivities. Unquestionably the Atacama Desert is a living desert with regard to which future microbiology and biotechnology research presents exciting opportunities.  相似文献   

13.
A group of human diseases, known as 'laminopathies', are associated with defects in proteins of the nuclear envelope. Most laminopathy mutations have been mapped to the A-type lamin gene, which is expressed in most adult cell types. So, why should different mutations in a near-ubiquitously expressed gene be associated with various discrete tissue-restricted diseases? Attempts to resolve this paradox are uncovering new molecular interactions #151; both inside the nucleus and at its periphery -- which indicate that the nuclear envelope has functions that go beyond mere housekeeping.  相似文献   

14.
In a current article in the Journal of Vegetation Science, Molina‐Montenegro and colleagues extend the study of plant–plant interactions on stress gradients to extremes – the moss and lichen‐dominated communities of Antarctica. They found that the importance of facilitation at this extreme end of a ‘cold–harsh continuum’ was similar to that reported at the extreme ends of alpine gradients around the world. In other words, in contrast to recent theory and case studies in other systems, facilitative effects did not wane in extremely stressful conditions.  相似文献   

15.
Quartz stones are ubiquitous in deserts and are a substrate for hypoliths, microbial colonists of the underside of such stones. These hypoliths thrive where extreme temperature and moisture stress limit the occurrence of higher plant and animal life. Several studies have reported the occurrence of green hypolithic colonization dominated by cyanobacteria. Here, we describe a novel red hypolithic colonization from Yungay, at the hyper-arid core of the Atacama Desert in Chile. Comparative analysis of green and red hypoliths from this site revealed markedly different microbial community structure as revealed by 16S rRNA gene clone libraries. Green hypoliths were dominated by cyanobacteria (Chroococcidiopsis and Nostocales phylotypes), whilst the red hypolith was dominated by a taxonomically diverse group of chloroflexi. Heterotrophic phylotypes common to all hypoliths were affiliated largely to desiccation-tolerant taxa within the Actinobacteria and Deinococci. Alphaproteobacterial phylotypes that affiliated with nitrogen-fixing taxa were unique to green hypoliths, whilst Gemmatimonadetes phylotypes occurred only on red hypolithon. Other heterotrophic phyla recovered with very low frequency were assumed to represent functionally relatively unimportant taxa.  相似文献   

16.
Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites. Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA sequences obtained from these sites showed banding patterns that suggest distinct and complex microbial communities. Analysis of 16S rDNA sequences obtained from UV-tolerant strains isolated from these sites revealed species related to the Bacillus and Pseudomonas genera. Vegetative cells of one of these isolates, Bacillus S3.300-2, showed the highest UV tolerance profile (LD10?=?318 J?m2), tenfold higher than a wild-type strain of Escherichia coli. Thus, our results show that the Atacama Desert harbors a noteworthy microbial community that may be considered for future astrobiological-related research in terms of UV tolerance.  相似文献   

17.
18.
19.
20.
Comprehending ecological dynamics requires not only knowledge of modern communities but also detailed reconstructions of ecosystem history. Ancient DNA (aDNA) metabarcoding allows biodiversity responses to major climatic change to be explored at different spatial and temporal scales. We extracted aDNA preserved in fossil rodent middens to reconstruct late Quaternary vegetation dynamics in the hyperarid Atacama Desert. By comparing our paleo‐informed millennial record with contemporary observations of interannual variations in diversity, we show local plant communities behave differentially at different timescales. In the interannual (years to decades) time frame, only annual herbaceous expand and contract their distributional ranges (emerging from persistent seed banks) in response to precipitation, whereas perennials distribution appears to be extraordinarily resilient. In contrast, at longer timescales (thousands of years) many perennial species were displaced up to 1,000 m downslope during pluvial events. Given ongoing and future natural and anthropogenically induced climate change, our results not only provide baselines for vegetation in the Atacama Desert, but also help to inform how these and other high mountain plant communities may respond to fluctuations of climate in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号