首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Toll-like receptors (TLRs) in innate immunity and their ability to recognise microbial products has been well characterised. TLRs are also able to recognise endogenous molecules which are released upon cell damage and necrosis and have been shown to be present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands during inflammation and consequently the activation of TLR signalling pathways may be one mechanism initiating and driving autoimmune diseases. An increasing body of circumstantial evidence implicates a role of TLR signalling in systemic lupus erythematosus (SLE), atherosclerosis, asthma, type 1 diabetes, multiple sclerosis, bowl inflammation and rheumatoid arthritis (RA). Although at present their involvement is not comprehensively defined. However, future therapies targeting individual TLRs or their signalling transducers may provide a more specific way of treating inflammatory diseases without global suppression of the immune system.  相似文献   

2.
Cognate interactions between immune effector cells and antigen-presenting cells (APCs) govern immune responses. Specific signals occur between the T-cell receptor peptide and APCs and nonspecific signals between pairs of costimulatory molecules. Costimulation signals are required for full T-cell activation and are assumed to regulate T-cell responses as well as other aspects of the immune system. As new discoveries are made, it is becoming clear how important these costimulation interactions are for immune responses. Costimulation requirements for T-cell regulation have been extensively studied as a way to control many autoimmune diseases and downregulate inflammatory reactions. The CD28:B7 and the CD40:CD40L families of molecules are considered to be critical costimulatory molecules and have been studied extensively. Blocking the interaction between these molecules results in a state of immune unresponsiveness termed 'anergy'. Several different strategies for blockade of these interactions are explored including monoclonal antibodies (mAbs), Fab fragments, chimeric, and/or fusion proteins. We developed novel, immune-specific approaches that interfere with these interactions. Using experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis mediated by central nervous system (CNS)-specific T-cells, we developed a multi-targeted approach that utilizes peptides for blockade of costimulatory molecules. We designed blocking peptide mimics that retain the functional binding area of the parent protein while reducing the overall size and are thus capable of blocking signal transduction. In this paper, we review the role of costimulatory molecules in autoimmune diseases, two of the most well-studied costimulatory pathways (CD28/CTLA-4:B7 and CD40:CD40L), and the advantages of peptidomimetic approaches. We present data showing the ability of peptide mimics of costimulatory molecules to suppress autoimmune disease and propose a mechanism for disease suppression.  相似文献   

3.
DCs (dendritic cells) are the strongest professional APCs (antigen-presenting cells) to initiate immune responses against pathogens, but they are usually incompetent in initiating efficient immune responses in the progress of solid tumours. We have shown that Notch signalling plays a pivotal role in DC-dependent anti-tumour immunity. Compared with the control DCs, OP9-DL1 (Delta-like1) cell co-cultured DCs gained increased tumour suppression activity when inoculated together with tumour cells. This was probably due to the activation of Notch signalling in DCs enhancing their ability to evoke anti-tumour immune responses in solid tumours. Indeed, the OP9-DL1 cell co-cultured DCs expressed higher levels of MHC I, MHC II, CXCR4 (CXC chemokine receptor 4), CCR7 (CC chemokine receptor 7), IL-6 (interleukin 6), IL-12 and TNFα (tumour necrosis factor α), and a lower level of IL-10 than control DCs, resulting in more efficient DC migration and T-cell activation in vivo and in vitro. T-cells stimulated by OP9-DL1 cells co-cultured DCs more efficiently; and were cytotoxic against tumour cells, in contrast with control DCs. These results indicated that up-regulation of Notch signalling in DCs by co-culturing with OP9-DL1 cells enhances DC-dependent anti-tumour immune reactions, making the Notch signalling pathway a target for the establishment of the DC-based anti-tumour immunotherapies.  相似文献   

4.
Negative regulation of toll-like receptor-mediated immune responses   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are involved in host defence against invading pathogens, functioning as primary sensors of microbial products and activating signalling pathways that induce the expression of immune and pro-inflammatory genes. However, TLRs have also been implicated in several immune-mediated and inflammatory diseases. As the immune system needs to constantly strike a balance between activation and inhibition to avoid detrimental and inappropriate inflammatory responses, TLR signalling must be tightly regulated. Here, we discuss the various negative regulatory mechanisms that have evolved to attenuate TLR signalling to maintain this immunological balance.  相似文献   

5.
线粒体是真核细胞至关重要的细胞器,参与机体细胞能量代谢和细胞凋亡等多种生物学过程。线粒体还参与机体的天然免疫反应的调节。线粒体不仅可以作为病毒免疫反应的载体,还可以通过产生ROS参与抗菌反应。线粒体受到损伤、刺激后,可释放mtDNA,TFAM,ROS,ATP,心磷脂和甲酰肽等内容物。这些分子可以作为损伤相关模式分子(damage associated molecular patterns, DAMPs)被模式识别受体识别,从而参与宿主的免疫调节。研究表明,线粒体已成为内源性DAMPs的重要来源,在先天性免疫应答以及疾病进展过程中发挥着重要的作用。本文就线粒体来源的损伤相关模式分子在机体免疫调节中的作用进行综述。  相似文献   

6.
Polyphenols are the major components of many traditional herbal remedies, which exhibit several beneficial effects including anti‐inflammation and antioxidant properties. Src homology region 2 domain‐containing phosphatase‐1 (SHP‐1) is a redox sensitive protein tyrosine phosphatase that negatively influences downstream signalling molecules, such as mitogen‐activated protein kinases, thereby inhibiting inflammatory signalling induced by lipopolysaccharide (LPS). Because a role of transforming growth factor β‐activated kinase‐1 (TAK1) in the upstream regulation of JNK molecule has been well demonstrated, we conjectured that SHP‐1 could mediate the anti‐inflammatory effect of verbascoside through the regulation of TAK‐1/JNK/AP‐1 signalling in the U937 cell line. Our results demonstrate that verbascoside increased the phosphorylation of SHP‐1, by attenuating the activation of TAK‐1/JNK/AP‐1 signalling. This leads to a reduction in the expression and activity of both COX and NOS. Moreover, SHP‐1 depletion deletes verbascoside inhibitory effects on pro‐inflammatory molecules induced by LPS. Our data confirm that SHP‐1 plays a critical role in restoring the physiological mechanisms of inducible proteins such as COX2 and iNOS, and that the down‐regulation of TAK‐1/JNK/AP‐1 signalling by targeting SHP‐1 should be considered as a new therapeutic strategy for the treatment of inflammatory diseases.  相似文献   

7.
8.
CD45 is a leukocyte specific transmembrane glycoprotein and a receptor-like protein tyrosine phosphatase (PTP). CD45 can be expressed as several alternatively spliced isoforms that differ in the extracellular domain. The isoforms are regulated in a cell type and activation state-dependent manner, yet their function has remained elusive. The Src family kinase members Lck and Lyn are key substrates for CD45 in T and B lymphocytes, respectively. CD45 lowers the threshold of antigen receptor signalling, which impacts T and B cell activation and development. CD45 also regulates antigen triggered Fc receptor signalling in mast cells and Toll-like receptor (TLR) signalling in dendritic cells, thus broadening the role of CD45 to other recognition receptors involved in adaptive and innate immunity. In addition, CD45 can affect immune cell adhesion and migration and can modulate cytokine production and signalling. Here we review what is known about the substrate specificity and regulation of CD45 and summarise its effect on immune cell signalling pathways, from its established role in T and B antigen receptor signalling to its emerging role regulating innate immune cell recognition and cytokine production.  相似文献   

9.
The negative regulation of Toll-like receptor and associated pathways   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are essential mediators of both innate and adaptive immunity by recognizing and eliciting responses upon invasion of pathogens. The response of TLRs must be stringently regulated as exaggerated expression of signalling components as well as pro-inflammatory cytokines can have devastating effects on the host, resulting in chronic inflammatory diseases, autoimmune disorders and aid in the pathogenesis of TLR-associated human diseases. Therefore, it is essential that negative regulators act at multiple levels within TLR signalling cascades, as well as through eliciting negative-feedback mechanisms in order to synchronize the positive activation and negative regulation of signal transduction to avert potentially harmful immunological consequences. This review explores the various mechanisms employed by negative regulators to ensure the appropriate modulation of both immune and inflammatory responses.  相似文献   

10.
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.  相似文献   

11.
Various lipidic molecules serve as second messengers for transducing signals from the cell surface to the cell interior and trigger specific cellular responses. Sphingolipids represent a complex group of lipids that have recently emerged as new transducers in eukaryotic cells. Several sphingolipid molecules are able to modulate cell growth, differentiation and death. This review summarises current knowledge of the signalling functions of sphingolipids, especially in the regulation of tumour necrosis factor [alpha] (TNF-[alpha])-mediated cytotoxic effects. TNF-[alpha] is a multifaceted cytokine that controls a wide range of immune responses in mammals, including induction of programmed cell death (also called apoptosis). On the basis of recent observations, a working model is proposed for the molecular mechanisms underlying regulation of sphingolipid generation following TNF-[alpha] receptor 1 activation. The implications of these findings for the development of future pharmacological strategies to prevent the cytotoxic TNF-[alpha] response and subsequent cellular dysfunctions (as seen in various human diseases) are discussed.  相似文献   

12.
Lymphocyte homeostasis is a balance between lymphocyte proliferation and lymphocyte death. Tight control of apoptosis is essential for immune function, because its altered regulation can result in cancer and autoimmunity. Signals from members of the tumour-necrosis-factor receptor (TNF-R) family, such as Fas and TNF-R1, activate the caspase cascade and result in lymphocyte death by apoptosis. Anti-apoptotic proteins, such as FLIP (also known as FLICE/caspase-8 inhibitory protein) have recently been identified. FLIP expression is tightly regulated in T cells and might be involved in the control of both T-cell activation and death. Abnormal expression of FLIP might have a role not only in autoimmune diseases, but also in tumour development and cardiovascular disorders.  相似文献   

13.
The modulation and suppression of anti-tumor immune responses is a characteristic feature of tumor cells to escape immune surveillance. Members of the B7 family are involved in this process, since the level of activation of the anti-tumor immune response depends on the balance between co-stimulatory and co-inhibitory signals. Some molecules are often overexpressed in tumors, which has been associated with the pathogenesis and progression of malignancies as well as their immunological and non-immunological functions. The B7 homologs play a key role in the maintenance of self-tolerance and the regulation of both innate and adaptive immunity in tumor-bearing hosts. Furthermore, the blockade of negative signals mediated by the interaction of co-inhibitory ligands and counter-receptors of the B7 family is currently being studied as a potential immunotherapeutic strategy for the treatment of cancer in humans.  相似文献   

14.
15.
Regulation of the gadd45beta promoter by NF-kappaB   总被引:9,自引:0,他引:9  
  相似文献   

16.
Glucocorticoids, acting through the glucocorticoid receptor, potently modulate immune function and are a mainstay of therapy for treatment of inflammatory conditions, autoimmune diseases, leukemias and lymphomas. Moreover, removal of systemic glucocorticoids, by adrenalectomy in animal models or adrenal insufficiency in humans, has shown that endogenous glucocorticoid production is required for regulation of physiologic immune responses. These effects have been attributed to suppression of cytokines, although the crucial cellular and molecular targets remain unknown. In addition, considerable controversy remains as to whether glucocorticoids are required for thymocyte development. To assess the role of the glucocorticoid receptor in immune system development and function, we generated T-cell-specific glucocorticoid receptor knockout mice. Here we show that the T-cell is a critical cellular target of glucocorticoid receptor signaling, as immune activation in these mice resulted in significant mortality. This lethal activation is rescued by cyclooxygenase-2 (COX-2) inhibition but not steroid administration or cytokine neutralization. These studies indicate that glucocorticoid receptor suppression of COX-2 is crucial for curtailing lethal immune activation, and suggest new therapeutic approaches for regulation of T-cell-mediated inflammatory diseases.  相似文献   

17.
18.
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity.One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.  相似文献   

19.
Bryostatin‐1 (Bry‐1) has been proven to be effective and safe in clinical trials of a variety of immune‐related diseases. However, little is known about its effect on Crohn's disease (CD). We aimed to investigate the impact of Bry‐1 on CD‐like colitis and determine the mechanism underlying this effect. In the present study, 15‐week‐old male Il‐10?/? mice with spontaneous colitis were divided into positive control and Bry‐1‐treated (Bry‐1, 30 μg/kg every other day, injected intraperitoneally for 4 weeks) groups. Age‐matched, male wild‐type (WT) mice were used as a negative control. The effects of Bry‐1 on colitis, intestinal barrier function and T cell responses as well as the potential regulatory mechanisms were evaluated. We found that the systemic delivery of Bry‐1 significantly ameliorated colitis in Il‐10?/? mice, as demonstrated by decreases in the disease activity index (DAI), inflammatory score and proinflammatory mediator levels. The protective effects of Bry‐1 on CD‐like colitis included the maintenance of intestinal barrier integrity and the helper T cell (Th)/regulatory T cell (Treg) balance. These effects of Bry‐1 may act in part through nuclear factor erythroid 2‐related factor 2 (Nrf2) signalling activation and STAT3/4 signalling inhibition. The protective effect of Bry‐1 on CD‐like colitis suggests Bry‐1 has therapeutic potential in human CD, particularly given the established clinical safety of Bry‐1.  相似文献   

20.
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号