首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scintigraphic imaging is a valuable tool for the development of liposome-based therapeutic agents. It provides the ability to non-invasively track and quantitate the distribution of liposomes in the body. Liposomes labeled with technetium-99 m (99mTc) are particularly advantageous for imaging studies because of their favorable physical characteristics. Examples of how scintigraphic imaging studies have contributed to the evaluation and development of a variety of liposome formulations will be presented. These include liposomes for targeting processes with inflammation associated increased vascular permeability such as healing bone fractures and viral infections; liposomes for intraarticular delivery; and liposomes for delivery of agents to lymph nodes located in the extremities, the mediastinum and the peritoneum. Scintigraphic studies of liposome distribution are very informational and often suggest new drug delivery applications for liposomes.  相似文献   

2.
For the currently used (99m)Tc-labeled diphosphonates such as (99m)Tc-MDP and (99m)Tc-HDP, the required interval of 2.5 to 3 h between injection and the scintigraphic bone imaging is an inconvenience. The present study was set up in an attempt to develop a technetium-99m-labeled diphosphonate with efficient bone uptake and more rapid clearance from blood and soft tissue by renal extraction and excretion so that it would be possible to start imaging as early as 1 h after injection. A conjugate of the new renal tracer agent (99m)Tc-ethylene dicysteine ((99m)Tc-L,L-EC), covalently bound via one of its carboxylates with aminomethylenediphosphonic acid (AMDP), was synthesized in seven steps. EC-AMDP could be labeled easily and efficiently with (99m)Tc at pH > or = 12 and room temperature. Analysis using ion pair reversed phase high performance liquid chromatography showed the formation of a mixture of two main compounds with reproducible relative ratios, which were stable as a function of time. In a baboon, the scintigraphic images obtained with the new agent showed good quality bone scans, with clear visualization of the skeleton and low soft tissue activity at respectively 1 and 2 h after injection.  相似文献   

3.
ABSTRACT

Scintigraphic imaging is a valuable tool for the development of liposome-based therapeutic agents. It provides the ability to non-invasively track and quantitate the distribution of liposomes in the body. Liposomes labeled with technetium-99 m (99mTc) are particularly advantageous for imaging studies because of their favorable physical characteristics. Examples of how scintigraphic imaging studies have contributed to the evaluation and development of a variety of liposome formulations will be presented. These include liposomes for targeting processes with inflammation associated increased vascular permeability such as healing bone fractures and viral infections; liposomes for intraarticular delivery; and liposomes for delivery of agents to lymph nodes located in the extremities, the mediastinum and the peritoneum. Scintigraphic studies of liposome distribution are very informational and often suggest new drug delivery applications for liposomes.  相似文献   

4.
We evaluated possibilities of bone scintigraphy with 99mTc-methylendiphosphonate (99mTc-MDP) and magnetic resonance imaging (MRI) in follow-up and prediction of effect in patients with extensive bone metastatic disease treated with betha-emitter 89SrCl2. 24 patients with prostate cancer and extensive metastatic involvement of skeleton were referred for the study. 89SrCl2 was injected as single injection of 150 MBq (4 mCi), in eighteen from Amersham plc., England, as Metastron, in six--from Medradiopreparat, Russia). In all patients bone scintigraphy with 99mTc-MDP and MRI study of metastatic regions were performed before and in 3 months after 89SrCl2 injection. Patients treated with Metsatron were also studied in 6 months after injection. Quantitative analysis of data comprised count and anatomic dimensions of metastatic areas and calculation of indices [metastasis/intact bone] both for scintillation count of 99mTc-MDP bone scans and signal intensity of T1-weighted MRI scan. Henceforth, we conclude the data of bone scanning with 99mTc-MDP and of MRI give evidencies for significant regress of bone metastases in patients treated with 89SrCl2 besides symptomatic suppression of pain syndrome. 99mTc-MDP bone scanning is also of predictive value for the prognosis of therapeutic effect of systemic radiotherapy with 89SrCl2 in prostate cancer.  相似文献   

5.
The quality of the images produced by nuclear magnetic resonance (NMR) imaging has steadily improved over the past five years. Images of the head, thorax, and abdomen have clearly shown the normal anatomy. A clinical trial of NMR imaging has therefore been started in Aberdeen to assess its diagnostic accuracy and compare it with conventional radiography and other imaging technique. The first patient examined by whole-body NMR imaging had carcinoma of the oesophagus diagnosed on barium meal examination. A technetium-99m-sulphur colloid liver scan also showed hepatic metastases. NMR imaging showed a large tumour in the lower third of the oesophagus, and areas of increased proton spin-lattice relaxation time (T1) on a section through the liver corresponded with the metastases shown on the radionuclide scan. Increased areas of T1 were present in some vertebrae, and a technetium-99m bone scan confirmed the presence of bone metastases. The NMR images in this patient compared well with the images from other techniques. The continuing clinical trial may show that NMR is an accurate diagnostic aid which will complement existing techniques for diagnosing intrathoracic and intra-abdominal conditions.  相似文献   

6.
马玉娟  欧阳建 《生物磁学》2009,(14):2759-2762
多发性骨髓瘤(MM)是一种浆细胞克隆性的恶性增殖性疾病,是最常见的易累及骨骼的肿瘤。骨骼X线是MM骨病检查的金标准。但是,普通X线对MM的检测存在很多限制。目前有研究报道^99mTc-甲氧基异丁基异睛(MIBI)显像反映MM瘤细胞负荷量及活动性的灵敏性、特异性强,本文主要就^99mTc-MIBI显像对MM疾病诊断、预后判断、疗效检测及与其它影像学检查比较的研究进行综述。  相似文献   

7.
Detection of HER2-overexpression in tumors and metastases is important for the selection of patients who will benefit from trastuzumab treatment. Earlier investigations showed successful imaging of HER2-positive tumors in patients using indium- or gallium-labeled Affibody molecules. The goal of this study was to evaluate the use of (99m)Tc-labeled Affibody molecules for the detection of HER2 expression. The Affibody molecule Z(HER2:342) with the chelator sequences mercaptoacetyl-Gly-Glu-Gly (maGEG) and mercaptoacetyl-Glu-Glu-Glu (maEEE) was synthesized by peptide synthesis and labeled with technetium-99m. Binding specificity, cellular retention, and in vitro stability were investigated. The biodistribution of (99m)Tc-maGEG-Z(HER2:342) and (99m)Tc-maEEE-Z(HER2:342) was compared with (99m)Tc-maGGG-Z(HER2:342) in normal mice, and the tumor targeting properties of (99m)Tc-maEEE-Z(HER2:342) were determined in SKOV-3 xenografted nude mice. The results showed that the Affibody molecules were efficiently labeled with technetium-99m. The labeled conjugates were highly stable in vitro with preserved HER2-binding capacity. The use of glutamic acid in the chelator sequences for (99m)Tc-labeling of Z(HER2:342) reduced the hepatobiliary excretion 3-fold with a single Gly-to-Glu substitution and 10-fold with three Gly-to-Glu substitutions. (99m)Tc-maEEE-Z(HER2:342) showed a receptor-specific tumor uptake of 7.9 +/- 1.0 %IA/g and a tumor-to-blood ratio of 38 at 4 h pi. Gamma-camera imaging with (99m)Tc-maEEE-Z(HER2:342) could detect HER2-expressing tumors in xenografts already at 1 h pi. It was concluded that peptide synthesis for the coupling of chelator sequences to Affibody molecules for (99m)Tc labeling is an efficient way to modify the in vivo kinetics. Increased hydrophilicity, combined with improved stability of the mercaptoacetyl-triglutamyl chelator, resulted in favorable biodistribution, making (99m)Tc-maEEE-Z(HER2:342) a promising tracer for clinical imaging of HER2 overexpression in tumors.  相似文献   

8.
Bisphosphonates (formerly termed diphosphonates) were first synthesized in the late 1800s; however, their clinical use has been relatively recent. The bisphosphonates' affinity for hydroxyapatite crystal surface led Procter and Gamble to test these compounds in dental, then medical applications. With key input from university researchers, this led to the medical use of the first bisphosphonate, etidronate disodium in 1968 to treat a young patient with myositis ossificans progressiva. Further clinical research led to widespread medical application for the bisphosphonate class including use as a diagnostic in radionuclide bone imaging agents, treatment of osteoporosis, Paget's disease of bone, hypercalcemia of malignancy and metastatic bone disease. The historical development of bisphosphonates provides an excellent example of how observations and knowledge obtained at the basic science level were applied and successfully tested in the clinic. The end result of these efforts has provided health care professionals with diagnostic and therapeutic tools to improve the lives of patients.  相似文献   

9.
INTRODUCTION: Recently a new somatostatin analogue labelled with (99m)Tc ((99m)Tc-HYNIC-TOC) has been synthetized. Aim of this study was to evaluate the utility of (99m)Tc-HYNIC-TOC in the radionuclide imaging in patients with medullary thyroid carcinoma (MTC). MATERIAL AND METHODS: 30 patients with MTC aged 22-83 years in different stages of the disease were investigated. In 6 patients (group 1) scintigraphy was performed before surgery directly after diagnosis of MTC. Four patients (group 2) were qualified to the study in the phase of remission after surgical treatment that had been confirmed by low concentrations of calcitonin. Twenty patients (group 3) were investigated due to stagnation or recurrence confirmed by persistent hypercalcitoninemia. The scintigraphy using (99m)Tc-HYNIC-TOC (Tektrotyd, POLATOM) was performed 2 and 4 hours post injection of 20 mCi (740 MBq) of the tracer. Other imaging techniques were also employed and analysed in individual cases (US, CT, (99m)Tc(V)-DMSA, (131)I-MIBG, (99m)Tc-MDP, (111)In-octreotide and FDG-PET). RESULTS: Images obtained 2 and 4 hours p.i. were similar. In group 1, uptake of the tracer was found in the primary tumour of MTC in all patients. In group 2, a false positive result was found in 1 of 6 patients. In the remaining 5 of 6 cases no pathological foci were visualised. In group 3, uptake in the thyroid bed was found in 3 of 20 cases and in the lymph nodes in 14 of 20 patients. In 3 of 20 cases uptake in the bone metastases was found. Globally, sensitivity of the scintigraphy using (99m)Tc-HYNIC-TOC was 86.4%, specificity - 75.0%, and accuracy - 84.6%. CONCLUSION: The scintigraphy using (99m)Tc-HYNIC-TOC showed high utility in the diagnosis of MTC. Confirmation of the presence of somatostatin receptors with this method may be used for treatment planning: surgery or radionuclide therapy.  相似文献   

10.
《Endocrine practice》2013,19(2):202-205
ObjectiveWe retrospectively evaluated patients with end-stage renal disease (ESRD) who were referred to our department for parathyroid scintigraphy. The aim of this study was to investigate the causes of bone marrow uptake observed on parathyroid scintigraphy.MethodsWe included 18 ESRD patients (10 F, 8 M; mean, 52 ± 13 years old; range, 45-59) in the study. The disease duration of the patients was mean 7.7 ± 4.7 years. The patients’ mean plasma calcium and parathormone (PTH) levels were 9.7 ± 1.4 mg/dL and 1,553.3 ± 691.7 pg/mL, respectively. Dual-phase technetium-99m 2-methoxyisobutyl-isonitrile (Tc-99m MIBI) parathyroid imaging and, if necessary, additional Tc-99m pertechnetate scintigraphy were performed. Quantification of the planar early phase parathyroid images was performed for various regions (sternum, humerus, ribs) with the same size rectangular region of interest (ROI, 176 × 176 pixels). Average counts were compared with paired samples Student’s t tests, and P <.05 was considered statistically significant.ResultsTc-99m MIBI parathyroid imaging revealed parathyroid hyperplasia, adenoma, and ectopic adenoma in 7, 3, and 2 patients, respectively. The other 7 patients had normal scintigraphy results with regard to parathyroid pathologies. Bone marrow uptake in the sternum, ribs, and humerus was observed in 6 patients. The difference between the average quantitative value obtained from the ROIs drawn on the sternum and humerus was also statistically significant compared to patients without bone marrow uptake (P<.05). All 6 patients’ exhibited extremely high PTH levels (>2,000 pg/mL; mean, 2,413.7 ± 150 pg/mL) compared to the other 12 patients (mean, 1,342.8 ± 249 pg/mL).ConclusionOur results show that bone marrow uptake on parathyroid scintigraphy is a consequence of extremely high PTH levels in ESRD patients; no further analysis is required. (Endocr Pract. 2013;19:202-205)  相似文献   

11.
Osteomyelitis is an infectious disease located in the bone or bone marrow. Long-circulating and pH-sensitive liposomes containing a technetium-99m-labeled antibiotic, ceftizoxime, (SpHL-(99m)Tc-CF) were developed to identify osteomyelitis foci. Biodistribution studies and scintigraphic images of bone infection or non infection-bearing rats that had been treated with these liposomes were performed. A high accumulation in infectious foci and high values in the target-non target ratio could be observed. These results indicate the potential of SpHL-(99m)Tc-CF as a potential agent for the diagnosis of bone infections.  相似文献   

12.
Tumor hypoxia is an important prognostic factor for response to therapy. Radiolabeled 2-nitroimidazoles have been used for imaging hypoxia, and the octanol/water partition coefficient (P) of these compounds appears to play a crucial role in their suitability for imaging. A series of 11 2-nitroimidazoles coupled to peptidic chelators for (99m)Tc with divergent P was developed and evaluated in an in vitro system. Two classes of N(3)S chelators were used: dialkyl-Gly-Ser-Cys-linker-2-nitroimidazole (Class I) and dialkyl-Gly-Lys(2-nitroimidazole)-Cys (Class II). The chelators were prepared by automated solid-phase peptide synthesis. Xanthine oxidase was able to reduce the 2-nitroimidiazole moiety on the ligands, but the rate of reduction varied 5-fold among the different chelators. The chelators were labeled by transchelation from [(99m)Tc]gluconate at temperatures between 22 and 100 degrees C. The reaction mixtures were analyzed by HPLC and their P values determined. The accumulation of each complex in suspension cultures of Chinese hamster ovary cells incubated under aerobic or extremely hypoxic conditions was determined. Radiochemical yields ranged from 5 to 80% for the 11 compounds. HPLC showed that some of the compounds formed two complexes with (99m)Tc, possibly syn and anti conformations with respect to the Tc=O bond. In general, the Class I chelators labeled more readily than the class II chelators. The P values of the (99m)Tc complexes varied from 0.0002 to 5 and were generally in accordance with predictions based on structure. There were also differences in P as a function of pH; the free acids had a lower P at pH 7.4 than at pH 2.0 due to ionization, whereas the amides did not show this effect. Accumulation levels in aerobic cells were related to P but varied over a narrow range. Four of the 11 compounds showed selective accumulation in hypoxic cells. The peptidic class of 2-nitroimidazoles, with flexible design and convenient solid-phase synthesis, deserves further study as agents for imaging hypoxia in tumors.  相似文献   

13.
Development of a (99m)Tc-fatty acid analogue is of interest, as (99m)Tc is logistically advantageous over the cyclotron-produced (11)C and (123)I. Synthesis of a 16 carbon fatty acid derivative and its radiolabeling with the novel [(99m)TcN(PNP)](2+) core is described here. Hexadecanedioic acid was conjugated to cysteine in an overall yield of 55%. This ligand could be labeled with (99m)Tc via the [(99m)TcN(PNP)](2+) core, in 80% yield, as a mixture of two isomers (syn and anti). The major isomer isolated by HPLC was used for bioevaluation studies in swiss mice and compared with radioiodinated iodophenyl pentadecanoic acid (IPPA), an established agent for myocardial metabolic imaging. (99m)Tc-labeled complex cleared faster from the non-target organs, namely, liver, lungs, and blood compared to that of [(125)I]-IPPA. However, the complex exhibited lower uptake and faster washout from the myocardium as compared to [(125)I]-IPPA.  相似文献   

14.
An important issue in the development of metal-based radiopharmaceuticals is the selection of the labelling strategy in order to couple the metal to the pharmacophore without losing the biological activity. With the aim to evaluate the correlation between ligand denticity and biological behaviour of the corresponding (99m)Tc complexes, we designed a tridentate and a bidentate 5-nitroimidazole derivatives suitable for (99m)Tc(I) tricarbonyl complexation and with potential use as radiopharmaceuticals towards hypoxic tissue diagnosis. Ligands were synthesized using metronidazol, a pharmaceutical containing the bioreductive pharmacophore as starting material. The chelating units were connected to the pharmacophore using the click reaction of Huisgen. Both (99m)Tc complexes were obtained in high yield and were hydrophilic and stable in labelling milieu. The complex obtained from the tridentate ligand exhibited high stability in human plasma, low protein binding and a favourable biodistribution characterized by low blood and liver uptake, fast elimination and negligible uptake in other organs or tissues. Selective uptake and retention in tumour together with favourable tumour/muscle ratio makes this (99m)Tc-complex a promising candidate for further evaluation as potential hypoxia imaging agent in tumours. The bidentate ligand, on the other hand, yielded a less stable (99m)Tc-complex that experimented hydrolysis in vitro and decomposition in human plasma and showed high protein binding, high blood and liver uptake and moderate excretion. Although selective uptake and retention in tumour was also observed physicochemical and biological behaviour are inadequate for in vivo use, demonstrating that denticity of the ligand is particularly important and that tridentate ligands are preferable in order to prepare (99m)Tc-tricarbonyl complexes for Nuclear Medicine imaging.  相似文献   

15.
Scintigraphic imaging is a valuable tool that can be used during the development of liposome-based therapeutic agents. It provides the ability to non-invasively track and quantitate the distribution of liposomes in the body. This review article provides a general overview of the methods involved in producing scintigraphic images as well as methods of radiolabeling liposomes. Liposomes labeled with technetium-99m ((99m)Tc) are particularly useful for scintigraphic imaging due to the physical characteristics of (99m)Tc, which provides a high quality image. Examples of how scintigraphic imaging studies have contributed to the development of a variety of liposome-based formulations are covered in this article. These liposome formulations include long-circulating liposome-based oxygen carriers, liposome-based anti-cancer drugs, liposomes encapsulating antibiotics and anti-fungals, and liposomes targeted to lymph nodes. Studies using scintigraphic imaging for the investigation of immune responses to liposomes are also discussed. These examples demonstrate the usefulness of scintigraphic imaging for the development of novel liposome formulations.  相似文献   

16.
Angiogenesis is a fundamental feature of tumor development, and therefore, the tracers for molecular imaging of specific angiogenic biomarkers are expected to be useful for diagnostics, patient monitoring, and drug development. We have created a new class of imaging agents based on the most important mediator of angiogenesis, vascular endothelial growth factor (VEGF). Our latest version is a single-chain (sc) VEGF protein containing an N-terminal Cys-tag designed for site-specific modification with a variety of imaging and therapeutic moieties. We have recently found that the Cys-tag itself can form a stable chelate with (99m)Tc using tin-tricine as an exchange reagent. This self-chelation approach yields a highly stable and fully functional form of radiolabeled scVEGF that can be used as a SPECT tracer for tumor angiogenesis. Also of note is that directly labeled scVEGF has less than one-half the nonspecific renal uptake of (99m)Tc-HYNIC-scVEGF. The simple production of scVEGF for direct chelation of (99m)Tc makes it a promising molecular imaging agent for the oncology clinic.  相似文献   

17.
The alphavbeta3-integrin is expressed in angiogenic vessels in response to hypoxia and represents a potential novel target for imaging myocardial angiogenesis. This study evaluated the feasibility of noninvasively tracking hypoxia-induced alphavbeta3-integrin activation within the myocardium as a marker of angiogenesis early after myocardial infarction. Acute myocardial infarction was produced by coronary artery occlusion in rodent and canine studies. A novel (111)In-labeled radiotracer targeted at the alphavbeta3-integrin ((111)In-RP748) was used to localize regions of hypoxia-induced angiogenesis early after infarction. In rodent studies, the specificity of (111)In-RP748 for alphavbeta3-integrin was confirmed with a negative control compound ((111)In-RP790), and regional uptake of these compounds correlated with (201)Tl perfusion and a (99m)Tc-labeled nitroimidazole (BRU59-21), which was used as a quantitative marker of myocardial hypoxia. The ex vivo analysis demonstrated that only (111)In-RP748 was selectively retained in infarcted regions with reduced (201)Tl perfusion and correlated with uptake of BRU59-21. In canine studies, myocardial uptake of (111)In-RP748 was assessed using in vivo single-photon-emission computed tomography (SPECT), ex vivo planar imaging, and gamma well counting of myocardial tissue and correlated with (99m)Tc-labeled 2-methoxy-2-methyl-propyl-isonitrile ((99m)Tc-sestamibi) perfusion. Dual-radiotracer in vivo SPECT imaging of (111)In-RP748 and (99m)Tc-sestamibi provided visualization of (111)In-RP748 uptake within the infarct region, which was confirmed by ex vivo planar imaging of excised myocardial slices. Myocardial (111)In-RP748 retention was associated with histological evidence of alphavbeta3-integrin expression/activation in the infarct region. (111)In-RP748 imaging provides a novel noninvasive approach for evaluation of hypoxia-induced alphavbeta3-integrin activation in myocardium early after infarction and may prove useful for directing and evaluating angiogenic therapies in patients with ischemic heart disease.  相似文献   

18.
Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated α4β1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course. Canine in vivo imaging studies will provide valuable biodistribution and affinity information that reflects a diverse clinical population of lymphoma. This may also help to determine potential dose-limiting radiotoxicity to organs in human clinical trials. To validate this construct in a naturally occurring model of NHL, we performed in-vivo molecular targeted imaging and biodistribution in 3 normal dogs and 5 NHL bearing dogs. (99m)Tc-LLP2A-HYNIC-PEG and (99m)Tc-LLP2A-HYNIC were successfully synthesized and had very good labeling efficiency and radiochemical purity. (99m)Tc-LLP2A-HYNIC and (99m)Tc-LLP2A-HYNIC-PEG had biodistribution in keeping with their molecular size, with (99m)Tc-LLP2A-HYNIC-PEG remaining longer in the circulation, having higher tissue uptake, and having more activity in the liver compared to (99m)Tc-LLP2A-HYNIC. (99m)Tc-LLP2A-HYNIC was mainly eliminated through the kidneys with some residual activity. Radioactivity was reduced to near-background levels at 6 hours after injection. In NHL dogs, tumor showed moderately increased activity over background, with tumor activity in B-cell lymphoma dogs decreasing after chemotherapy. This compound is promising in the development of targeted drug-delivery radiopharmaceuticals and may contribute to translational work in people affected by non-Hodgkin lymphoma.  相似文献   

19.
Zhou Y  Liu S 《Bioconjugate chemistry》2011,22(8):1459-1472
Alteration in mitochondrial transmembrane potential (ΔΨ(m)) is an important characteristic of cancer. The observation that the enhanced negative mitochondrial potential is prevalent in tumor cell phenotype provides a conceptual basis for development of mitochondrion-targeting therapeutic drugs and molecular imaging probes. Since plasma and mitochondrial potentials are negative, many delocalized organic cations, such as rhodamine-123 and (3)H-tetraphenylphosphonium, are electrophoretically driven through these membranes, and able to localize in the energized mitochondria of tumor cells. Cationic radiotracers, such as (99m)Tc-Sestamibi and (99m)Tc-Tetrofosmin, have been clinically used for diagnosis of cancer by single photon emission computed tomography (SPECT) and noninvasive monitoring of the multidrug resistance (MDR) transport function in tumors of different origin. However, their diagnostic and prognostic values are often limited due to their insufficient tumor localization (low radiotracer tumor uptake) and high radioactivity accumulation in the chest and abdominal regions (low tumor selectivity). In contrast, the (64)Cu-labeled phosphonium cations represent a new class of PET (positron emission tomography) radiotracers with good tumor uptake and high tumor selectivity. This review article will focus on our recent experiences in evaluation of (64)Cu-labeled phosphonium cations as potential PET radiotracers. The main objective is to illustrate the impact of radiometal chelate on physical, chemical, and biological properties of (64)Cu radiotracers. It will also discuss some important issues related to their tumor selectivity and possible tumor localization mechanism.  相似文献   

20.
The goal of this investigation was to examine the possibilities for yttrium-90-labeling of the 2,3-dicarboxypropane-1,1-diphosphonic acid (DPD), which is currently labeled with technetium-99m and as a (99m)Tc-DPD clinically used as bone imaging agent. Analysis of the complex enclosed the radiochemical quality control methods, biodistribution studies, as well as the determination of pharmacokinetic parameters. The biological behavior of complexes (90)Y-DPD, (99m)Tc-DPD and (90)Y-labeled DPD-kit formulation [(90)Y-(Sn)-DPD] in animal model was compared. The labeling conditions were standardized to give the maximum yield, which ranged between 93% and 98%. The examined (90)Y complex could be easily prepared, with an outstanding yield and was also found to be very stable for at least 10h after (90)Y-labeling. Protein binding value was 4.6+/-0.7% for (90)Y-DPD complex and the complex possess a hydrophilic character. The satisfactory results of (90)Y-DPD biodistribution in healthy test animals were obtained; the uptake in the bone was 11-13%ID/g after 24h depending on the pH value during the preparation. With high skeletal uptake, a minimum uptake in soft tissues and rapid blood clearance the (90)Y-DPD complex proved to be an excellent candidate for targeting tumor therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号