首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced insecticide use in cotton, Gossypium hirsutum L., as a consequence of the Boll Weevil Eradication Program and the broad adoption of Bt cotton, have helped make the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), a consistent pest of cotton each year in the mid-south. Maize, Zea mays L., has been implicated as having a role in the season-long dynamics of tarnished plant bug infestations in cotton. To date, no published information exists describing the quality of maize as a host for tarnished plant bug. No-choice field studies indicated that adult tarnished plant bug females oviposited into maize leaves, tassels, and ears. Laboratory studies showed that first-instar tarnished plant bugs could successfully develop to the adult stage when fed maize silks at the R1 growth stage, tassels before (VT) and during (R1) pollen shed, and milk stage (R3) kernels from the tip and base of the ear. The proportion of nymphs surviving to the adult stage on these tissues was often similar to that of broccoli, Brassica oleracea L. Nymphs did not develop to adults when fed V5 or R1 maize leaves. However, survival of first instars to the adult stage was improved when nymphs fed on tassels with pollen for 6 d and then moved to silks or leaves. Another field study showed that tarnished plant bugs reproduced in maize mainly during the tassel (VE and VT) and the R1-R3 ear growth stages, and a single new generation was produced in maize during these stages. The highest population recorded during the study (24 June 2005) consisted mostly of nymphs and was estimated to be 29,600/ha (12,000/acre). These studies showed that maize is a suitable host for tarnished plant bug reproduction and development, and its production plays a significant role in the population dynamics of the tarnished plant bug in the mid-south.  相似文献   

2.
Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), from regions 1, 2, and 3 of the boll weevil, Anthonomous grandis Boheman, eradication program in Mississippi were collected from wild hosts and tested for malathion resistance during the spring and fall of 2000 and 2001. Plant bugs were also tested in region 1 in late-July and October of 1999, just before and after multiple applications of ultra-low-volume (ULV) malathion were used for reproduction-diapause control of boll weevils in August and September. Regions 1 (north Delta), 2 (south Delta), and 3 (hills) began boll weevil eradication in 1999, 1998, and 1997, respectively. A glass-vial bioassay was used to determine resistance in plant bugs to malathion by comparing LC50 values against an LC50 value obtained for susceptible plant bugs. Comparison of the LC50 value obtained for plant bugs at a location in the spring was also made with the LC50 value obtained in the fall at the same location. After multiple applications of malathion made for reproduction-diapause boll weevil control in region 1 in August and September, malathion resistance increased by 4.9-, 6.5-, and 20.8-fold in plant bug populations from the three test locations. Results from testing bugs from all three eradication regions were similar. Malathion resistance usually increased significantly from spring to fall and then declined significantly from fall to spring of the next year. Despite reduced use of malathion in all three eradication regions for boll weevils in 2001, resistance to malathion in plant bugs still increased significantly from spring to fall at all test locations in regions 1 and 2 (the Delta). Malathion resistance did not increase significantly in plant bug populations in region 3 (the hills) in 2001 from spring to fall at three of four test locations in this year. Possible causes for the higher malathion resistance found in plant bugs in the Delta are discussed. Overall test results showed that the use of malathion in boll weevil eradication in cotton probably contributed to increases in resistance to malathion in plant bug populations in the eradication areas. However, the expression of this resistance was usually rapidly lost by spring of the following year. Boll weevil eradication did not seem to produce a permanent increase in the expression of malathion resistance in tarnished plant bug populations found in the eradication regions.  相似文献   

3.
W.H. Day   《Biological Control》2005,33(3):368-374
High numbers of tarnished plant bugs [Lygus lineolaris (Palisot)], were once common in alfalfa, as was a low level of parasitism (9%) by the native Peristenus pallipes (Curtis). After the bivoltine European parasite Peristenus digoneutis Loan became well established, average parasitism of the first and second generations increased to 64%, and tarnished plant bug numbers dropped by 65%. This reduced host density eventually caused a decline in total parasitism by both parasite species to 22%. A few P. digoneutis also attacked the alfalfa plant bug, Adelphocoris lineolatus (Goeze), but did not reduce this pest or increase its parasitism rate. At another location, where P. digoneutis is not established, parasitism of first generation alfalfa plant bugs, an adventive (accidently introduced) pest, was increased to 21% by the introduced univoltine parasite, Peristenus conradi Marsh, and a slight reduction in the pest may have resulted. P. digoneutis did not parasitize the meadow plant bug, Leptopterna dolabrata (L.), an adventive pest of forage grasses, so did not affect this mirid or its parasite. Neither introduced parasite eliminated the native parasites of the tarnished or alfalfa plant bugs. The narrow host ranges of the braconid parasites of mirid nymphs are contrasted with the broad host range of the native tachinid parasite [Phasia robertsoni (Towns.)] of adult mirids. The major changes in mirid abundance and their mortality by parasites that slowly occurred during this 19-year study demonstrate the need for long-term field research, to adequately document and understand these complex interactions.  相似文献   

4.
Developmental times and survivorship of tarnished plant bug nymphs, Lygus lineolaris (Palisot de Beauvois), and longevity and reproduction of adult tarnished plant bug adults reared on green beans were studied at multiple constant temperatures. The developmental time for each life stage and the total time from egg to adult decreased with increasing temperature. Eggs required the longest time to develop followed by fifth instars and then first-instars. Total developmental time from egg to adult was shortest at 32°C, requiring 18.0 ± 0.3 d and 416.7 ± 31.3 DD above 7.9°C, the estimated minimum temperature for development from egg to adult. Sex did not affect total developmental times and did not affect median survival time. Adults lived significantly fewer days at high temperatures (30-32°C: 17-19 d) compared with temperatures below 30°C (range: 24.5-39.4 d) and the number of eggs laid per day increased from ≈ 4 at 18°C to a maximum of 9.5 eggs per day at 30°C. Total egg production over the lifetime of female tarnished plant bugs increased with temperature reaching a maximum of 175 eggs on average at 27°C, total egg production declined at temperatures above 27°C (30°C: 110.8, 32°C: 77.3 eggs per female). The highest net reproductive rate 74.5 (R(0)) was obtained from insects maintained at 27°C. The intrinsic rate of natural increase (r(m)) increased linearly with temperature to a maximum value of 0.1852 at 30°C, and then decreased at 32°C. Generation and doubling times of the population were shortest at 30°C, 21.0 and 3.7 d, respectively.  相似文献   

5.
A complex of hemipterans, especially the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae), has become a major target of insecticides in flowering cotton, Gossypium hirsutum L., in the mid-southern United States. Sampling protocols for this complex during this period of cotton development are poorly established, resulting in uncertainty about when infestations warrant treatment. Nine direct and indirect sampling methods were evaluated for bias, precision, and efficiency in cotton throughout the Mid-South during 2005 and 2006. The tarnished plant bug represented 94% of the bug complex in both years. Sweep-net and black drop-cloth methods were more efficient than other direct sampling methods, but they were biased toward adults and nymphs, respectively. Sampling dirty blooms was the most efficient indirect sampling method. The sweep-net, whole-plant, and dirty-bloom methods were more accurate than the other sampling methods evaluated based on correlations with other sampling methods. Variability attributed to the person collecting the sample was significant for all sampling methods, but least significant for the dirty-square method. Further research is needed to establish thresholds based on sweep-net, drop-cloth, dirty-square, and dirty-bloom sampling methods as these methods provide the best combinations of accuracy and efficiency for sampling tarnished plant bugs in cotton.  相似文献   

6.
The current study investigated the impact of reflective mulch on yield of strawberry plants and incidence of damage by tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), for three strawberry cultivars: 'Honeoye', 'Earliglow', and two sibling Dayneutrals ('Tribute' and 'Tristar', herein considered as one cultivar). Of all cultivars tested, Honeoye was the most productive and least susceptible to tarnished plant bug. For Earliglow and Honeoye, reflective mulch enhanced productivity of strawberry plants and suppressed density of nymphs per flower cluster and proportion of damaged fruits, but did not significantly impact numbers of nymphs or damaged fruits per hectare, Results with Dayneutrals were not consistently significant. Both in the presence or absence of reflective mulch, proportion of damaged fruits increased with increasing density of nymphs per flower cluster and with decreasing number of fruits harvested per row section, suggesting that planting productive strawberry cultivars or maintaining cultural practices that promote high yield may provide an effective line of defense against tarnished plant bug. These results also suggest that reflective mulch may suppress incidence of damage by tarnished plant bug both directly, by reducing number of nymphs per flower cluster, and indirectly, by enhancing productivity of strawberry plants. Economic analyses evaluating costs and benefits of using reflective mulch, as well as studies investigating mechanisms that underlie the impact of reflective mulch on yield and incidence of damage by tarnished plant bug, are still needed before reflective mulch can be implemented as a management strategy in commercial strawberry fields.  相似文献   

7.
Commercially produced maturity group (MG) IV soybeans, Glycine max L., were sampled during bloom for tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois), during May and June 1999 (3 fields) and 2001 (18 fields). The adults and nymphs were found primarily in single population peaks in both years, indicating a single new generation was produced during each year. The peak mean numbers of nymphs were 0.61 and 0.84 per drop cloth sample in 1999 and 2001, respectively. Adults peaked at 3.96 (1999) and 3.76 (2001) per sweep net sample (25 sweeps). Tests using laboratory-reared and field-collected tarnished plant bugs resulted in very poor survival of nymphs on 16 different soybean varieties (MG III, one; IV, four; V, nine; VI, two). A large cage (0.06 ha) field test found that the number of nymphs produced on eight soybean varieties after mated adults were released into the cages was lower than could be expected on a suitable host. These results indicated that soybean was a marginal host for tarnished plant bugs. However, the numbers of adults and nymphs found in the commercially produced fields sampled in the study may have been high enough to cause feeding damage to the flowering soybeans. The nature of the damage and its possible economic importance were not determined. Reproduction of tarnished plant bugs in the commercially produced early soybean fields showed that the early soybeans provided tarnished plant bugs with a very abundant host at a time when only wild hosts were previously available.  相似文献   

8.
The sweep net is a standard sampling method for adults of the western tarnished plant bug, Lygus hesperus Knight (Hemiptera: Miridae), in cotton (Gossypium spp.). However, factors that influence the relationship between true population levels and population estimates obtained using the sweep net are poorly documented. Improved understanding of these factors is needed for the development and application of refined treatment thresholds. Recent reports of significant among-sampler differences in sweep net-based population estimates of the adult tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), seem to preclude meaningful comparisons of population estimates collected by different samplers. We used a mark-release-recapture method and the standard sweep net to evaluate among-sampler differences in population estimates of L. hesperus adults. Adult lygus, marked with fingernail polish to facilitate identification and prevent flight, were released into 10-m sample rows on the evening before 10-sweep samples were collected the following morning. The experimental design was a randomized complete block with three replications of three treatments (sampler). Separate experiments were conducted in two plantings each of Pima (Gossypium barbadense L.) and Acala (Gossypium hirsutum L.) cotton. Collections of marked bugs from each study were evaluated for effects of sampler, sample date, and their interaction. Although differences in lygus collections were observed among sample dates in some tests, no differences were detected in the population estimates by different samplers. These results demonstrate that the sweep net technique can be sufficiently standardized to allow direct comparison of population estimates obtained by different samplers.  相似文献   

9.
A key economic pest of strawberries in California is the western tarnished plant bug, Lygus hesperus Knight (Hemiptera:Miridae). Alfalfa (Medicago sativa L.) is a highly attractive plant host to western tarnished plant bug, and we hypothesized that it can be successfully managed as a trap crop for pest suppression in strawberries. Completely randomized design trap cropping experiments were established on an organic strawberry farm from 2002 to 2004. Western tarnished plant bug adults and nymphs were significantly more abundant in alfalfa trap crops than in comparable edge strawberry rows. Over 3 experimental yr, twice-weekly summer vacuuming of alfalfa trap crops with a tractor-mounted vacuuming device reduced adult and nymph abundance by 72 and 90%, respectively, in trap crops. This summer vacuuming of alfalfa trap crops also significantly reduced damage caused by western tarnished plant bug in associated unvacuumed organic strawberries (June and July 2002, June 2003, and June and July 2004) compared with either an untreated control (2003) or the organic strawberry grower's standard whole field vacuuming treatment. Vacuuming of alfalfa trap crops reduces an organic grower's costs (tractor, tractor fuel, and driver time) by 78% compared with current whole field vacuuming practices. An economic analysis of a whole hectare model indicates that a positive return from the use of vacuumed trap crops could be realized in 2004. The overall potential positive net return for the 3 mo of vacuumed alfalfa trap crop treatments in 2004 was calculated at +$1,829/ha.  相似文献   

10.
Optimal mating frequencies differ between sexes as a consequence of the sexual differentiation of reproductive costs per mating, where mating is normally more costly to females than males. In mating systems where sexual reproduction is costly to females, sexual conflict may cause both direct (i.e. by reducing female fecundity or causing mortality) and indirect (i.e. increased risk of mortality, reduced offspring viability) reductions in lifetime reproductive success of females, which have individual and population consequences. We investigated the direct and indirect costs of multiple mating in a traumatically inseminating (TI) predatory Warehouse pirate bug, Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), where the male penetrates the female's abdomen during copulation. This study aimed to quantify the effects of TI on female fecundity, egg viability, the lifetime fecundity schedule, longevity and prey consumption in this cosmopolitan biocontrol agent. We found no difference in the total reproductive output between mating treatments in terms of total eggs laid or offspring viability, but there were significant differences found in daily fecundity schedules and adult longevity. In terms of lifetime reproduction, female Warehouse pirate bugs appear to be adapted to compensate for the costs of TI mating to their longevity.  相似文献   

11.
Microsporidiosis of adult honeybees caused by Nosema apis and Nosema ceranae is a common worldwide disease with negative impacts on colony strength and productivity. Few options are available to control the disease at present. The role of the queen in bee population renewal and the replacement of bee losses due to Nosema infection is vital to maintain colony homeostasis. Younger queens have a greater egg laying potential and they produce a greater proportion of uninfected newly eclosed bees to compensate for adult bee losses; hence, a field study was performed to determine the effect of induced queen replacement on Nosema infection in honey bee colonies, focusing on colony strength and honey production. In addition, the impact of long-term Nosema infection of a colony on the ovaries and ventriculus of the queen was evaluated. Queen replacement resulted in a remarkable decrease in the rates of Nosema infection, comparable with that induced by fumagillin treatment. However, detrimental effects on the overall colony state were observed due to the combined effects of stressors such as the queenless condition, lack of brood and high infection rates. The ovaries and ventriculi of queens in infected colonies revealed no signs of Nosema infection and there were no lesions in ovarioles or epithelial ventricular cells.  相似文献   

12.
Two watermelon pest management practices, a squash trap crop and a standard recommendation using soil-applied carbofuran, were compared using large-scale field plots to assess trap crop suitability as a replacement for the standard in 2000, 2001, and 2002. In both systems, foliar insecticide applications were used to control squash bugs when populations exceeded threshold levels. During 2001 and 2002, a treatment of untreated watermelon was used. Early season adult insects, from seedling to fruit set, are most critical for watermelon. Significantly fewer early adult bugs were found on watermelon in the trap crop than in the standard recommended practice in 1 of 3 yr. In both years, significantly fewer adult squash bugs were found in watermelon in the trap crop than in untreated fields. The standard recommended practice significantly reduced adult squash bugs in watermelon compared with the untreated in 1 of 2 yr. There was no significant correlation of watermelon yield and squash bug density, indicating that squash bug densities were too low to impact yield. Although squash bugs were reduced significantly by the trap crop, marketable watermelon yields were lower in the squash trap crop than in untreated watermelon, suggesting that pest management treatments may interfere with crop productivity factors other than squash bug colonization. Results suggest that mid-season production squash bug should be managed by monitoring populations and using insecticides as needed rather than using at-plant treatment. Further research is needed to compare treatments during early-season production.  相似文献   

13.
In southeastern United States farmscapes, corn, Zea mays L., is often closely associated with peanut, (Arachis hypogaea L.), cotton, (Gossypium hirsutum L.), or both. The objective of this 3-yr on-farm study was to examine the influence of corn on stink bugs (Heteroptera: Pentatomidae), Nezara viridula (L.), and Euschistus servus (Say), in subsequent crops in these farmscapes. Adults of both stink bug species entered corn first, and seasonal occurrence of stink bug eggs, nymphs, and adults indicated that corn was a suitable host plant for adult survival and nymphal development to adults. Stink bug females generally oviposited on cotton or peanut near the interface, or common boundary, of the farmscape before senescence of corn, availability of a new food, or both. Adult stink bugs dispersed from crop to crop at the interface of a farmscape in response to senescence of corn, availability of new food, or both. In corn-cotton farmscapes, adult stink bugs dispersed from senescing corn into cotton to feed on bolls (fruit). In corn-peanut farmscapes, adult stink bugs dispersed from senescing corn into peanut, which apparently played a role in nymphal development in these farmscapes. In the corn-cotton-peanut farmscape, stink bug nymphs and adults dispersed from peanut into cotton in response to newly available food, not senescence of peanut. Stink bug dispersal into cotton resulted in severe boll damage. In conclusion, N. viridula and E. servus are generalist feeders that exhibit edge-mediated dispersal from corn into subsequent adjacent crops in corn-cotton, corn-peanut, and corn-peanut-cotton farmscapes to take advantage of suitable resources available in time and space for oviposition, nymphal development, and adult survival. Management strategies for crops in this region need to be designed to break the cycle of stink bug production, dispersal, and expansion by exploiting their edge-mediated movement and host plant preferences.  相似文献   

14.
为了解近年来入侵我国的菊方翅网蝽的生物学特性,并为该昆虫种群在我国未来发展的趋势及防治提供科学依据,我们在温度(25±2) ℃、湿度(80±5)%、光周期L∶D=14∶10的实验室条件下,饲养、观察并记录了其各龄幼虫的形态特征,测定了该虫生长发育历期、存活率和产卵量等,构建了实验种群繁殖特征生命表,并计算了种群动态的相关参数.结果表明: 菊方翅网蝽的卵期为(14.58±1.17) d,若虫期为(14.88±1.45) d,成虫寿命为(59.88±5.85) d,单雌产卵量为(87.2±17.8)粒.该实验种群的内禀增长率(rm)为0.05,周限增长率(λ)为1.06,世代平均历期(T)为46.11 d,净繁殖率(R0)为11.88,种群加倍时间(t)为12.91 d;此外,在种群的稳定年龄组配中,若虫期占59.3%,成虫期占40.7%.预计菊方翅网蝽有可能会在中国进一步扩散并造成潜在的危害.  相似文献   

15.
Spatial distribution patterns of adult squash bugs were determined in watermelon, Citrullus lanatus (Thunberg) Matsumura and Nakai, during 2001 and 2002. Results of analysis using Taylor's power law regression model indicated that squash bugs were aggregated in watermelon. Taylor's power law provided a good fit with r2 = 0.94. A fixed precision sequential sampling plan was developed for estimating adult squash bug density at fixed precision levels in watermelon. The plan was tested using a resampling simulation method on nine and 13 independent data sets ranging in density from 0.15 to 2.52 adult squash bugs per plant. Average estimated means obtained in 100 repeated simulation runs were within the 95% CI of the true means for all the data. Average estimated levels of precision were similar to the desired level of precision, particularly when the sampling plan was tested on data having an average mean density of 1.19 adult squash bugs per plant. Also, a sequential sampling for classifying adult squash bug density as below or above economic threshold was developed to assist in the decision-making process. The classification sampling plan is advantageous in that it requires smaller sample sizes to estimate the population status when the population density differs greatly from the action threshold. However, the plan may require excessively large sample sizes when the density is close to the threshold. Therefore, an integrated sequential sampling plan was developed using a combination of a fixed precision and classification sequential sampling plans. The integration of sampling plans can help reduce sampling requirements.  相似文献   

16.
The species composition and abundance of stink bugs (Heteroptera: Pentatomidae) in corn, Zea mays L., was determined in this on-farm study in Georgia. Seven species of phytophagous stink bugs were found on corn with the predominant species being Nezara viridula (L.) and Euschistus servus (Say). All developmental stages of these two pests were found, indicating they were developing on the corn crop. The remaining five species, Oebalus pugnax pugnax (F.), Euschistus quadrator (Rolston), Euschistus tristigmus (Say), Euschistus ictericus (L.), and Acrosternum hilare (Say), were found in relatively low numbers. Adult N. viridula were parasitized by the tachinid parasitoid Trichopoda pennipes (F.). There was a pronounced edge effect in distribution of stink bugs in corn. Population dynamics of N. viridula and E. servus were different on early and late-planted corn. Oviposition by females of both stink bug species occurred in mid-to-late-May and again mid-to-late-June in corn, regardless of planting date. In early planted fields, if stink bug females oviposited on corn in mid-July, the resulting nymphs did not survive to the adult stage in corn because ears were close to physiological maturity and leaves were senescing. Density of stink bug adults in early planted corn was relatively low throughout the growing season. In late-planted corn, females of both stink bug species consistently laid eggs in mid-to-late-July on corn with developing ears. This habitat favored continued nymph development, and the resulting adult population reached high levels. These results indicate that corn management practices play a key role in the ecology of stink bugs in corn agroecosystems and provide information for designing management strategies to suppress stink bugs in farmscapes with corn.  相似文献   

17.
The European tarnished plant bug (Lygus rugulipennis Poppius) is among the most serious pests in the family Miridae, and therefore there is increasing interest in understanding the behaviour of this species. In the present study, laboratory recordings were taken using a laser vibrometer on adult males and females to ascertain whether acoustic signals are involved in intraspecific communication. Recordings were both carried out on plant and loudspeaker membrane substrates. Males and females emitted vibratory signals and the present results indicate that these signals are important during courtship. The basic signal characteristics measured were the dominant frequency, pulse duration, repetition time and number of pulses per group within the signal. Male and female signals did not differ in respect to any of these characteristics. Plant recorded signals were longer because of different mechanical properties of substrates. Additionally, the high frequency components were attenuated due to the low-pass filtering properties of plants. As this is the first study on vibratory communication of the European tarnished plant bug, we believe these findings may contribute considerably to the better understanding of the mating behavior of this important pest species.  相似文献   

18.
We conducted a 2-yr study in commercial apple orchards in Nova Scotia to assess the effects of ground cover treatments and insecticides on population density and fruit injury caused by tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). The design was a split-plot with insecticides applied to whole orchard blocks and ground cover treatments applied to plots nested within orchard blocks. Ground cover treatments were 1) standard herbicide use, 2) enhanced weed control in tree rows, and 3) treatment two plus use of a selective herbicide in laneways. Treatments had few significant effects on vegetation in the tree row, but in laneways, known dicot hosts of L. lineolaris were suppressed and nonhost grasses promoted with treatment 3. Ground cover treatments did not affect cumulative captures of adult tarnished plant bugs on white sticky traps located in the plots but did affect captures in sweep nets. Split-plot ANOVA indicated no significant effect of insecticides on injury in either year, but ground cover treatments were significant in 2001. The lowest ranking rates of injury in both years were in orchards treated before bloom with a pyrethroid insecticide, either cyhalothrin-lambda or cypermethrin. The highest ranking rate of injury occurred in an orchard where insecticide was not applied until after bloom despite a high prebloom capture of L. lineolaris adults on orchard perimeter sticky traps. Fruit injury values for the ground cover treatment 3 were 63.3% (n.s.) and 50.0% (P < 0.05), respectively, of those in the standard treatment in 2000 and 2001.  相似文献   

19.
Effects of an organophosphorus insecticide, malathion, on survivorship and lipid peroxidation of the greater wax moth, Galleria mellonella (L.), pupae were investigated by rearing the newly hatched larvae on an artificial diet containing 0.01, 0.1, 1, 10, and 100 ppm of the insecticide. As bioindicators of long-term physiological stress responses, the adult emergence rate, longevity, and fecundity associated with lipid peroxidation level and antioxidant enzyme activity in the endoparasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae) were determined by rearing the parasitoid on a factitious host, G. mellonella pupae treated with malathion. At 100 ppm, malathion significantly decreased pupation rate of G. mellonella larvae and the rate of adult emergence of the parasitoid from these pupae. This concentration resulted in a significant increase in the lipid peroxidation product malondialdehyde (MDA) in both the host and the parasitoid. Malathion at 1 and 10 ppm significantly increased pupation rate and lipid peroxidation level of G. mellonella pupae. The adult emergence rate of P. turionellae was significantly decreased from 63.7 to 20% by these concentrations, whereas MDA content was increased by two- and three-fold, respectively, compared with the control (45.3 +/- 3.2 nmol/ g protein). The longevity of adults was significantly extended from 52.5 +/- 5.7 to 75.7 +/- 6.3 d when the parasitoids emerged from host pupae exposed with 0.1 ppm malathion. At low concentrations (0.01 and 0.1 ppm), malathion significantly increased the number of eggs laid per female per day. However, the lowest concentration (0.01 ppm) had no significant effect on hatchability, whereas 0.1 ppm of the insecticide resulted in significant decrease in egg hatch compared with the control. A significant increase in total superoxide dismutase (SOD) activity for low concentrations of malathion (0.01-1 ppm) was found compared with the control. There was a significant positive correlation of SOD activities with adult longevity and fecundity. This study suggested that malathion-induced oxidative stress was causative factor in the deterioration of biological fitness and that increased SOD activities may have resulted in decreased oxidative damage, which retarded the rate of deteriorative physiological changes in P. turionellae in response to sublethal doses of malathion.  相似文献   

20.
ABSTRACT. Selected sugars, amino acids and allelochemicals were tested over a range of concentrations to determine their effect on the ingestion rates of adult tarnished plant bugs. Experiments were performed with a two-choice bioassay technique utilizing artificial membranes. Sucrose was the most effective feeding stimulant of all the compounds tested. Glucose was an effective stimulant but was 8 times less potent than sucrose. Fructose was 50 times less potent than sucrose. Methionine and phenylalanine were the only amino acids of seven tested which stimulated feeding. Leucine produced a deterrent effect. Cotton tannin was the most effective deterrent of all allelochemicals tested and was 10 times more potent than gossypol. The quinone, 1, 4-napthoquinone, and the alkaloid, tomatine, were also effective feeding deterrents. Sinigrin and its aglycone, ethyl isothiocyanate, were among the weakest deterrents of all the allelochemicals tested. Hydroquinone was the least potent deterrent of all compounds tested. The results indicate a strong chemosensory component regulating the feeding response of the tarnished plant bug. It is suggested that this response is mediated by epipharyngeal chemosensitive sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号