首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin and insulin-like growth factor-1 (IGF-1) regulate metabolism and body growth through homologous receptor tyrosine kinases that phosphorylate the insulin receptor substrate (IRS) proteins. IRS-2 is an important IRS protein, as it mediates peripheral insulin action and beta-cell survival. In this study, we show that insulin, IGF-1, or osmotic stress promoted ubiquitin/proteasome-mediated degradation of IRS-2 in 3T3-L1 cells, Fao hepatoma, cells and mouse embryo fibroblasts; however, insulin/IGF-1 did not promote degradation of IRS-1 in 3T3-L1 preadipocytes or mouse embryo fibroblasts. MG132 or lactacystin, specific inhibitors of 26S proteasome, blocked insulin/IGF-1-induced degradation of IRS-2 and enhanced the detection of ubiquitinated IRS-2. Insulin/IGF1-induced ubiquitination and degradation of IRS-2 was blocked by inhibitors of phosphatidylinositol 3-kinase (wortmannin or LY294002) or mTOR (rapamycin). Chronic insulin or IGF-1 treatment of IRS-1-deficient mouse embryo fibroblasts inhibited IRS-2-mediated activation of Akt and ERK1/2, which was reversed by lactacystin pretreatment. By contrast, IRS-1 activation of Akt and ERK1/2 was not inhibited by chronic insulin/IGF-1 stimulation in IRS-2-deficient mouse embryo fibroblasts. Thus, we identified a novel negative feedback mechanism by which the ubiquitin/proteasome-mediated degradation of IRS-2 limits the magnitude and duration of the response to insulin or IGF-1.  相似文献   

2.
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40   总被引:3,自引:0,他引:3  
Insulin stimulates protein synthesis and cell growth by activation of the protein kinases Akt (also known as protein kinase B, PKB) and mammalian target of rapamycin (mTOR). It was reported that Akt activates mTOR by phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2). However, in recent studies the physiological requirement of Akt phosphorylation of TSC2 for mTOR activation has been questioned. Here, we identify PRAS40 (proline-rich Akt/PKB substrate 40 kDa) as a novel mTOR binding partner that mediates Akt signals to mTOR. PRAS40 binds the mTOR kinase domain and its interaction with mTOR is induced under conditions that inhibit mTOR signalling, such as nutrient or serum deprivation or mitochondrial metabolic inhibition. Binding of PRAS40 inhibits mTOR activity and suppresses constitutive activation of mTOR in cells lacking TSC2. PRAS40 silencing inactivates insulin-receptor substrate-1 (IRS-1) and Akt, and uncouples the response of mTOR to Akt signals. Furthermore, PRAS40 phosphorylation by Akt and association with 14-3-3, a cytosolic anchor protein, are crucial for insulin to stimulate mTOR. These findings identify PRAS40 as an important regulator of insulin sensitivity of the Akt-mTOR pathway and a potential target for the treatment of cancers, insulin resistance and hamartoma syndromes.  相似文献   

3.
4.
The clinical symptoms of Alzheimer disease (AD) include a gradual memory loss and subsequent dementia, and neuropathological deposition of senile plaques and neurofibrillary tangles. At the molecular level, AD subjects present overt amyloid β (Aβ) production and tau hyperphosphorylation. Aβ species have been proposed to overactivate the phosphoinositide3‐kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis, which plays a central role in proteostasis. The current study investigated the status of the PI3K/Akt/mTOR pathway in post‐mortem tissue from the inferior parietal lobule (IPL) at three different stages of AD: late AD, amnestic mild cognitive impairment (MCI) and pre‐clinical AD (PCAD). Our findings suggest that the alteration of mTOR signaling and autophagy occurs at early stages of AD. We found a significant increase in Aβ (1–42) levels, associated with reduction in autophagy (Beclin‐1 and LC‐3) observed in PCAD, MCI, and AD subjects. Related to the autophagy impairment, we found a hyperactivation of PI3K/Akt/mTOR pathway in IPL of MCI and AD subjects, but not in PCAD, along with a significant decrease in phosphatase and tensin homolog. An increase in two mTOR downstream targets, p70S6K and 4EBP1, occurred in AD and MCI subjects. Both AD and MCI subjects showed increased, insulin receptor substrate 1, a candidate biomarker of brain insulin resistance, and GSK‐3β, a kinase targeting tau phosphorylation. Nevertheless, tau phosphorylation was increased in the clinical groups. The results hint at a link between Aβ and the PI3K/Akt/mTOR axis and provide further insights into the relationship between AD pathology and insulin resistance. In addition, we speculate that the alteration of mTOR signaling in the IPL of AD and MCI subjects, but not in PCAD, is due to the lack of substantial increase in oxidative stress.

  相似文献   


5.
As impaired insulin signalling (IIS) is a risk factor for Alzheimer’s disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2−/−) mice which develop insulin resistance. The resulting Tg2576/Irs2−/− animals had increased tau phosphorylation but a paradoxical amelioration of Aβ pathology. An increase of the Aβ binding protein transthyretin suggests that increased clearance of Aβ underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes—a reduction in aggregated Aβ but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.  相似文献   

6.
A pathway sensitive to rapamycin, a selective inhibitor of mammalian target of rapamycin (mTOR), down-regulates effects of insulin such as activation of Akt (protein kinase B) via proteasomal degradation of insulin receptor substrate 1 (IRS-1). We report here that the pathway also plays an important role in insulin-induced subcellular redistribution of IRS-1 from the low-density microsomes (LDM) to the cytosol. After prolonged insulin stimulation, inhibition of the redistribution of IRS-1 by rapamycin resulted in increased levels of IRS-1 and the associated phosphatidylinositol (PI) 3-kinase in both the LDM and cytosol, whereas the proteasome inhibitor lactacystin increased the levels only in the cytosol. Since rapamycin but not lactacystin enhances insulin-stimulated 2-deoxyglucose (2-DOG) uptake, IRS-1-associated PI 3-kinase localized at the LDM was suggested to be important in the regulation of glucose transport. The amino acid deprivation attenuated and the amino acid excess enhanced insulin-induced Ser/Thr phosphorylation and subcellular redistribution and degradation of IRS-1 in parallel with the effects on phosphorylation of p70 S6 kinase and 4E-BP1. Accordingly, the amino acid deprivation increased and the amino acid excess decreased insulin-stimulated activation of Akt and 2-DOG uptake. Furthermore, 2-DOG uptake was affected by amino acid availability even when the degradation of IRS-1 was inhibited by lactacystin. We propose that subcellular redistribution of IRS-1, regulated by the mTOR-dependent pathway, facilitates proteasomal degradation of IRS-1, thereby down-regulating Akt, and that the pathway also negatively regulates insulin-stimulated glucose transport, probably through the redistribution of IRS-1. This work identifies a novel function of mTOR that integrates nutritional signals and metabolic signals of insulin.  相似文献   

7.
Regulation of insulin receptor substrate (IRS)-2 expression is critical to beta-cell survival, but the mechanisms that control this are complex and undefined. Here in pancreatic beta-cells (INS-1), chronic exposure (>8 h) to 15 mm glucose and/or 5 nm IGF-1, increased Ser/Thr phosphorylation of IRS-2, which correlated with decreased IRS-2 levels. This glucose/IGF-1-induced decrease in IRS-2 levels was prevented by the proteasomal inhibitor, lactacystin. In addition, the glucose/IGF-1-induced increase in Ser/Thr phosphorylation of IRS-2 and the subsequent decrease in INS-1 cell IRS-2 protein levels was thwarted by the mammalian target of rapamycin(mTOR) inhibitor, rapamycin. Moreover, adenoviral-mediated expression of constitutively active mTOR (mTORDelta) further increased glucose/IGF-1-induced Ser/Thr phosphorylation of IRS-2 and decreased IRS-2 protein levels, whereas adenoviral-mediated expression of "kinase-dead" mTOR (mTOR-KD) conversely reduced Ser/Thr phosphorylation of IRS-2 and maintained IRS-2 protein levels. In adenoviral-infected beta-cells expressing mTORDelta, the decrease in IRS-2 protein levels was also prevented by rapamycin or lactacystin, further indicating a proteasomal mediated degradation of IRS-2 mediated via mTOR-induced Ser/Thr phosphorylation of IRS-2. Finally, we found that chronic activation of mTOR leading to decreased levels of IRS-2 in INS-1 cells led to a significant decrease in PKB activation and consequently increased beta-cell apoptosis. Thus, chronic activation of mTOR by glucose (and/or IGF-1) in beta-cells leads to increased Ser/Thr phosphorylation of IRS-2 that targets it for proteasomal degradation, resulting in decreased IRS-2 expression and increased beta-cell apoptosis. This may be a contributing mechanism as to how beta-cell mass is decreased by chronic hyperglycemia in the pathogenesis of type-2 diabetes.  相似文献   

8.
The AMP-activated protein kinase (AMPK) is known to increase cardiac insulin sensitivity on glucose uptake. AMPK also inhibits the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) pathway. Once activated by insulin, mTOR/p70S6K phosphorylates insulin receptor substrate-1 (IRS-1) on serine residues, resulting in its inhibition and reduction of insulin signaling. AMPK was postulated to act on insulin by inhibiting this mTOR/p70S6K-mediated negative feedback loop. We tested this hypothesis in cardiomyocytes. The stimulation of glucose uptake by AMPK activators and insulin correlated with AMPK and protein kinase B (PKB/Akt) activation, respectively. Both treatments induced the phosphorylation of Akt substrate 160 (AS160) known to control glucose uptake. Together, insulin and AMPK activators acted synergistically to induce PKB/Akt overactivation, AS160 overphosphorylation, and glucose uptake overstimulation. This correlated with p70S6K inhibition and with a decrease in serine phosphorylation of IRS-1, indicating the inhibition of the negative feedback loop. We used the mTOR inhibitor rapamycin to confirm these results. Mimicking AMPK activators in the presence of insulin, rapamycin inhibited p70S6K and reduced IRS-1 phosphorylation on serine, resulting in the overphosphorylation of PKB/Akt and AS160. However, rapamycin did not enhance the insulin-induced stimulation of glucose uptake. In conclusion, although the insulin-sensitizing effect of AMPK on PKB/Akt is explained by the inhibition of the insulin-induced negative feedback loop, its effect on glucose uptake is independent of this mechanism. This disconnection revealed that the PKB/Akt/AS160 pathway does not seem to be the rate-limiting step in the control of glucose uptake under insulin treatment.  相似文献   

9.
Hepatitis C virus (HCV) infection significantly increases the prevalence of type 2 diabetes mellitus (T2DM). Insulin receptor substrate 1 (IRS-1) plays a key role in insulin signaling, thus enabling metabolic regulation in mammalian cells. We have previously shown that HCV infection modulates phosphorylation of Akt, a downstream target of IRS-1. In this study, we further examined the status of total IRS-1 and the downstream regulation of the Akt pathway in understanding mTOR/S6K1 signaling using HCV genotype 2a (clone JFH1)-infected hepatocytes. Inhibition of IRS-1 expression was observed in HCV-infected hepatocytes compared to that in a mock-infected control. The status of the tuberous sclerosis complex (TSC-1/TSC-2) was significantly decreased after HCV infection of human hepatocytes, showing a modulation of the downstream Akt pathway. Subsequent study indicated an increased level of Rheb and mTOR expression in HCV-infected hepatocytes. Interestingly, the phosphoS6K1 level was higher in HCV-infected hepatocytes, suggesting a novel mechanism for IRS-1 inhibition. Ectopic expression of TSC-1/TSC-2 significantly recovered the IRS-1 protein expression level in HCV-infected hepatocytes. Further analyses indicated that HCV core protein plays a significant role in modulating the mTOR/S6K1 signaling pathway. Proteasome inhibitor MG 132 recovered IRS-1 and TSC1/2 expression, suggesting that degradation occurred via the ubiquitin proteasome pathway. A functional consequence of IRS-1 inhibition was reflected in a decrease in GLUT4 protein expression and upregulation of the gluconeogenic enzyme PCK2 in HCV-infected hepatocytes. Together, these observations suggested that HCV infection activates the mTOR/S6K1 pathway in inhibiting IRS-1 function and perturbs glucose metabolism via downregulation of GLUT4 and upregulation of PCK2 for insulin resistance.  相似文献   

10.
Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1−/− and IRS-2−/− mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins.  相似文献   

11.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

12.
In the present study we have investigated the effect of increased serine/threonine phosphorylation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) by okadaic acid pretreatment on brown adipocyte insulin signalling leading to glucose transport, an important metabolic effect of insulin in brown adipose tissue. Okadaic acid pretreatment before insulin stimulation decreased IRS-1 and IRS-2 tyrosine phosphorylation in parallel to a decrease in their sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility. IRS-1/IRS-2-associated p85alpha and phosphatidylinositol (PI) 3-kinase enzymatic activity were partly reduced in brown adipocytes pretreated with okadaic acid upon stimulation with insulin. Furthermore, insulin-induced glucose uptake was totally abolished by the inhibitor in parallel with a total inhibition of insulin-induced protein kinase C (PKC) zeta activity. However, activation of Akt/PKB or p70 S6 kinase (p70(s6k)) by insulin remained unaltered. Our results suggest that downstream of PI 3-kinase, insulin signalling diverges into at least two independent pathways through Akt/PKB and PKC zeta, the PKC zeta pathway contributing to glucose transport induced by insulin in fetal brown adipocytes.  相似文献   

13.
Studies suggest that activation of phosphoinositide 3-kinase-Akt may protect against neuronal cell death in Alzheimer's disease (AD). Here, however, we provide evidence of increased Akt activation, and hyperphosphorylation of critical Akt substrates in AD brain, which link to AD pathogenesis, suggesting that treatments aiming to activate the pathway in AD need to be considered carefully. A different distribution of Akt and phospho-Akt was detected in AD temporal cortex neurons compared with control neurons, with increased levels of active phosphorylated-Akt in particulate fractions, and significant decreases in Akt levels in AD cytosolic fractions, causing increased activation of Akt (phosphorylated-Akt/total Akt ratio) in AD. In concordance, significant increases in the levels of phosphorylation of total Akt substrates, including: GSK3beta(Ser9), tau(Ser214), mTOR(Ser2448), and decreased levels of the Akt target, p27(kip1), were found in AD temporal cortex compared with controls. A significant loss and altered distribution of the major negative regulator of Akt, PTEN (phosphatase and tensin homologue deleted on chromosome 10), was also detected in AD neurons. Loss of phosphorylated-Akt and PTEN-containing neurons were found in hippocampal CA1 at end stages of AD. Taken together, these results support a potential role for aberrant control of Akt and PTEN signalling in AD.  相似文献   

14.
Generation of low levels of nitric oxide (NO) contributes to beta cell survival in vitro. The purpose of this study was to explore the link between NO and the survival pathway triggered by insulin-like growth factor-1 (IGF-1) and insulin in insulin producing RINm5F cells and in pancreatic islets. Results show that exposure of cells to IGF-1/insulin protects against serum deprivation-induced apoptosis. This action is prevented with inhibitors of NO generation, PI3K and Akt. Moreover, transfection with the negative dominant form of the tyrosine kinase c-Src abrogates the effect of IGF-1 and insulin on DNA fragmentation. An increase in the expression level of NOS3 protein and in the enzyme activity is observed following exposure of serum-deprived RINm5F cells to IGF-1 and insulin. Phosphorylation of IRS-1, IRS-2 and to less extent IRS-3 takes place when serum-deprived RINm5F cells and rat pancreatic islets are exposed to either IGF-1, insulin, or diethylenetriamine nitric oxide adduct (DETA/NO). In human islets, IRS-1 and IRS-2 proteins are present and tyrosine phosphorylated upon exposure to IGF-1, insulin and DETA/NO. Both rat and human pancreatic islets undergo DNA fragmentation when cultured in serum-free medium and IGF-1, insulin and DETA/NO protect efficiently from this damage. We then conclude that generation of NO participates in the activation of survival pathways by IGF-1 and insulin in beta cells.  相似文献   

15.
Many of the neurodegenerative diseases that afflict people in later life are associated with the formation of protein aggregates. These so-called “proteinopathies” include Alzheimer’s disease (AD) and Huntington’s disease (HD). The insulin/insulin-like growth factor signalling (IIS) pathway has been proposed to modulate such diseases in model organisms, as well as the general ageing process. In this pathway, insulin-like growth factor binds to insulin-like growth factor receptors, such as the insulin-like growth factor 1 receptor (IGF-1R). Heterozygous deletion of Igf-1r has been shown to lead to increased lifespan in mice. Reducing the activity of this pathway had benefits in a HD C. elegans model, and some of these may be attributed to the expected inhibition of mTOR activity resulting in an increase in autophagy, which would enhance mutant huntingtin clearance. Thus, we tested if heterozygous deletion of Igf-1r would lead to benefits in HD related phenotypes in the mouse. Surprisingly, reducing Igf-1r levels led to some beneficial effects in HD females, but also led to some detrimental effects in HD males. Interestingly, Igf-1r deficiency had no discernible effects on downstream mTOR signalling in HD mice. These results do not support a broad beneficial effect of diminishing the IIS pathway in HD pathology in a mammalian system.  相似文献   

16.
Phosphorylation of insulin receptor substrate (IRS)-2 on tyrosine residues is a key event in IGF-1/insulin signaling and leads to activation of the PI 3-kinase and the Ras/MAPK pathway. Furthermore, phosphorylated serine/threonine residues on IRS-2 can induce 14-3-3 binding. In this study we searched IRS-2 for novel phosphorylation sites and investigated the interaction between IRS-2 and 14-3-3. Mass spectrometry identified a total of 24 serine/threonine residues on IRS-2 with 12 sites unique for IRS-2 while the other residues are conserved in IRS-1 and IRS-2. IGF-1 stimulation led to increased binding of 14-3-3 to IRS-2 in transfected HEK293 cells and this binding was prevented by inhibition of the PI 3-kinase pathway and an Akt/PKB inhibitor. Insulin-stimulated interaction between endogenous IRS-2 and 14-3-3 was observed in rat hepatoma cells and in mice liver after an acute insulin stimulus and refeeding. Using different IRS-2 fragments enabled localization of the IGF-1-dependent 14-3-3 binding region spanning amino acids 300-600. The 24 identified residues on IRS-2 included several 14-3-3 binding candidates in the region 300-600. Single alanine mutants of these candidates led to the identification of serine 573 as 14-3-3 binding site. A phospho-site specific antibody was generated to further characterize serine 573. IGF-1-dependent phosphorylation of serine 573 was reduced by inhibition of PI 3-kinase and Akt/PKB. A negative role of this phosphorylation site was implicated by the alanine mutant of serine 573 which led to enhanced phosphorylation of Akt/PKB in an IGF-1 time course experiment. To conclude, our data suggest a physiologically relevant role for IGF-1/insulin-dependent 14-3-3 binding to IRS-2 involving serine 573.  相似文献   

17.
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling.  相似文献   

18.
19.
Moderate calorie restriction (CR) (~60% of ad libitum, AL, intake) has been associated with numerous favorable physiological outcomes in many species, and the insulin/IGF-1 and mTOR signaling pathways have each been proposed as potential mediators for many of CR's bioeffects. However, few studies have assessed the widely held idea that CR induces the down-regulation of the insulin/IGF-1 and/or mTOR pathways in multiple tissues. Accordingly, we analyzed the phosphorylation status of 11 key signaling proteins from the insulin/IGF-1 (IR(Tyr1162/1163), IGF-1R(Tyr1135/1136), IRS-1(Ser312), PTEN(Ser380), Akt(Ser473), GSK3α(Ser21), GSK3β(Ser9)) and mTOR (TSC2(Ser939), mTOR(Ser2448), P70S6K(Thr412), RPS6(Ser235/236)) pathways in 11 diverse tissues [liver, kidney, lung, aorta, two brain regions (cortex and cerebellum), and two slow-twitch and three fast-twitch skeletal muscles] from 9-month-old male AL and CR Fischer 344 x Brown Norway rats. The rats were studied under two conditions: with endogenous insulin levels (i.e., AL>CR) and with insulin infused during a hyperinsulinemic-euglycemic clamp so that plasma insulin concentrations were matched between the two diet groups. The most striking and consistent effect of CR was greater pAkt in 3 of the 5 skeletal muscles of CR vs. AL rats. There were no significant CR effects on the mTOR signaling pathway and no evidence that CR caused a general attenuation of mTOR signaling across the tissues studied. Rather than supporting the premise of a global downregulation of insulin/IGF-1 and/or mTOR signaling in many tissues, the current results revealed clear tissue-specific CR effects for the insulin signaling pathway without CR effects on the mTOR signaling pathway.  相似文献   

20.

Objective

Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2).

Research Design and Methods

To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO).

Results

We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β.

Conclusions

These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号