首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Rotenone, a widely used pesticide, reproduces parkinsonism in rodents and associates with increased risk for Parkinson disease. We previously reported that rotenone increased superoxide production by stimulating the microglial phagocyte NADPH oxidase (PHOX). This study identified a novel mechanism by which rotenone activates PHOX. Ligand-binding assay revealed that rotenone directly bound to membrane gp91(phox), the catalytic subunit of PHOX; such binding was inhibited by diphenyleneiodonium, a PHOX inhibitor with a binding site on gp91(phox). Functional studies showed that both membrane and cytosolic subunits were required for rotenone-induced superoxide production in cell-free systems, intact phagocytes, and COS7 cells transfected with membrane subunits (gp91(phox)/p22(phox)) and cytosolic subunits (p67(phox) and p47(phox)). Rotenone-elicited extracellular superoxide release in p47(phox)-deficient macrophages suggested that rotenone enabled activation of PHOX through a p47(phox)-independent mechanism. Increased membrane translocation of p67(phox), elevated binding of p67(phox) to rotenone-treated membrane fractions, and coimmunoprecipitation of p67(phox) and gp91(phox) in rotenone-treated wild-type and p47(phox)-deficient macrophages indicated that p67(phox) played a critical role in rotenone-induced PHOX activation via its direct interaction with gp91(phox). Rac1, a Rho-like small GTPase, enhanced p67(phox)-gp91(phox) interaction; Rac1 inhibition decreased rotenone-elicited superoxide release. In conclusion, rotenone directly interacted with gp91(phox); such an interaction triggered membrane translocation of p67(phox), leading to PHOX activation and superoxide production.  相似文献   

2.
Misfolded toxic human islet amyloid polypeptide or amylin (hA) and plasma membrane-associated redox complex, NADPH oxidase (NOX), have been implicated in the islet β-cell demise associated with type-2 diabetes mellitus (T2DM). Studies show that hA accumulation is stressful to β-cells and that misfolding of human amylin evokes redox stress and activates mitogen activated protein (MAP) kinases, p38 MAPK and c-Jun N-terminal (JNK) kinase. However, the molecular link and causality between hA-evoked redox stress, NOX activity and MAP kinases signaling in pancreatic β-cells is incompletely understood. Here, we show that in the process of activating JNK, aggregation prone hA also activates an upstream apoptosis signal regulating kinase-1 (ASK1) with concomitant decrease in intracellular levels of reduced glutathione. Inhibition of ASK1 kinase activity, either by specific ASK1 inhibitor, NQDI1 or by thiol antioxidants reduces human amylin-evoked ASK1 and JNK activation and consequently human amylin toxicity in rat insulinoma Rin-m5F cells and human islets. β-cell specific overexpression of human amylin in mouse islets elicited ASK1 phosphorylation and activation in β-cells but not in other rodent's islet or exocrine cells. This ASK1 activation strongly correlated with islet amyloidosis and diabetes progression. Cytotoxic human amylin additionally stimulated pro-oxidative activity and expressions of plasma membrane bound NADPH oxidase (NOX) and its regulatory subunits. siRNA mediated NOX1 knockdown and selective NOX inhibitors, ML171 and apocynin, significantly reduced hA-induced mitochondrial stress in insulinoma beta-cells. However, NOX inhibitors were largely ineffective against hA-evoked redox stress and activation of cytotoxic ASK1/JNK signaling complex. Thus, our studies suggest that NOX1 and ASK1 autonomously mediate human amylin-evoked redox and mitochondrial stress in pancreatic β-cells.  相似文献   

3.
In type 2 diabetes, pancreatic β-cells cannot secret enough insulin compensate for insulin resistance, which are often accompanied by abnormality in lipid metabolism such as hypertriglyceridemia. It is reported that oxidative stress is involved in pancreatic β-cell dysfunction. However, molecular mechanisms linking between excessive generations of reactive oxygen species (ROS) and β-cell dysfunction and apoptosis induced by high levels of very low-density lipoprotein (VLDL) are poorly understood. In this study, we test the hypothesis that NADPH oxidase 2 (NOX2)-derived ROS may play a key role in dysfunction and apoptosis of pancreatic β-cell induced by VLDL. Our results show that the ApoCIII transgenic mice displayed increased serum TG levels, enhanced generation of ROS and impaired insulin content in pancreatic β-cells. In vitro, the treatment of pancreatic NIT-1 cells with 1?mg/ml VLDL for 12?h stimulated NOX2-derived ROS generation, decreased expression and secretion of insulin. Furthermore, we found that VLDL induced dysfunction and apoptosis of pancreatic β-cells through JNK and p53 pathways, which were rescued by siRNA-mediated NOX2 reduction. In conclusion, our data demonstrate a critical role of NOX2-derived ROS in dysfunction and apoptosis through JNK and p53 pathways in pancreatic β-cells induced by VLDL.  相似文献   

4.
Increased oxidative stress plays a role in the pathogenesis of beta-cell dysfunction and death. We studied isoforms of NADPH oxidase components in islets of Langerhans isolated from rat pancreas and tumoral rat beta-cell line RINm5F cells by RT-PCR and sequencing of its products. RT-PCR revealed that isolated islets constitutively expressed mRNA of NADPH oxidase components, Nox1, Nox2, Nox4 and p22(phox) as membrane-associated components and p47(phox), Noxo1 (homologue of p47(phox)), Noxa1 (homologue of p67(phox)), and p40(phox) as cytosolic components. RINm5F cells showed a similar pattern of expression but Nox2 mRNA was not detected. Expression of Nox1, Nox4, Noxo1 and Noxa1 was confirmed by sequencing the PCR products. Immunohistochemistry revealed the expression of NADPH oxidase component in beta-cells of rat pancreatic islets. Glucose-stimulated insulin secretion from isolated islets was suppressed by diphenyleneiodonium, a flavocytochrome inhibitor, but not by apocynin, an inhibitor of p47(phox) translocation to membranes. Our results suggest that the functional significance of NADPH oxidase in insulin secretion may merit further investigation.  相似文献   

5.
Dang PM  Babior BM  Smith RM 《Biochemistry》1999,38(18):5746-5753
The leukocyte NADPH oxidase catalyzes the one-electron reduction of oxygen to O2- at the expense of NADPH. It is a multicomponent enzyme comprising a membrane-bound flavocytochrome (cytochrome b558) and at least four cytosolic components: p47PHOX, p67PHOX, p40PHOX, and Rac, a small GTPase. All the oxidase components except p40PHOX are required for enzyme activity. Many aspects of their function, however, are unclear. Using the electron acceptor ferricyanide, we found that recombinant p67PHOX from baculovirus-infected Sf9 cells could mediate the dehydrogenation of NADPH. NADPH dehydrogenation was not dependent on FAD and was insensitive to superoxide dismutase. Several control experiments showed that NADPH dehydrogenation was accomplished by p67PHOX, not by a trace contaminant in the p67PHOX preparation. The NADPH dehydrogenase activity of p67PHOX was proportional to enzyme concentration, and showed saturation kinetics with NADPH (Km 92 +/- 5 microM), but was inhibited at high concentrations of ferricyanide. NADH was also used as a substrate by p67PHOX (Km 123 +/- 38 microM). Taken together, these results show that p67PHOX is able to mediate pyridine nucleotide dehydrogenation. These findings raise the possibility that p67PHOX might participate directly in electron transfer between NADPH and the oxidase flavin.  相似文献   

6.
Reactive oxygen species produced by NADPH oxidase appear to play a role in the response of human lung fibroblast cells to rhinovirus infection. The purpose of the following studies was to characterize the NADPH oxidase components in these cells, to examine the effect of rhinovirus challenge on the expression of these proteins, and to confirm previous studies suggesting a role for p47-phox in the oxidant response to rhinovirus challenge. The results revealed that the NADPH oxidase components p47-phox, p67-phox, p22-phox, and NOX4 were expressed in lung fibroblast cells. In contrast, gp91-phox was not expressed in this cell line. Expression of p67-phox was upregulated by rhinovirus challenge. The functional role of NADPH oxidase in the rhinovirus-induced oxidant stress and elaboration of IL-8 was confirmed by detection of significant reductions in oxidant stress and IL-8 elaboration following transfection of the cells with antisense nucleotides to p47-phox. The lack of gp91-phox in cultured lung fibroblast cells, the induction of p67-phox by rhinovirus, and the confirmation of participation of p47-phox in rhinovirus-induced oxidant stress are significant findings of this study and form a basis for future investigations into understanding the mechanisms of the NADPH oxidase response to rhinovirus infection.  相似文献   

7.
Yuan H  Lu Y  Huang X  He Q  Man Y  Zhou Y  Wang S  Li J 《The FEBS journal》2010,277(24):5061-5071
Defects in insulin secretion by pancreatic cells and/or decreased sensitivity of target tissues to insulin action are the key features of type 2 diabetes. It has been shown that excessive generation of reactive oxygen species (ROS) is linked to glucose-induced β-cell dysfunction. However, cellular mechanisms involved in ROS generation in β-cells and the link between ROS and glucose-induced β-cell dysfunction are poorly understood. Here, we demonstrate a key role of NADPH oxidase 2 (NOX2)-derived ROS in the deterioration of β-cell function induced by a high concentration of glucose. Sprague-Dawley rats were fed a high-fat diet for 24 weeks to induce diabetes. Diabetic rats showed increased glucose levels and elevated ROS generation in blood, but decreased insulin content in pancreatic β-cells. In vitro, increased ROS levels in pancreatic NIT-1 cells exposed to high concentrations of glucose (33.3 mmol·L(-1)) were associated with elevated expression of NOX2. Importantly, decreased glucose-induced insulin expression and secretion in NIT-1 cells could be rescued via siRNA-mediated NOX2 reduction. Furthermore, high glucose concentrations led to apoptosis of β-cells by activation of p38MAPK and p53, and dysfunction of β-cells through phosphatase and tensih homolog (PTEN)-dependent Jun N-terminal kinase (JNK) activation and protein kinase B (AKT/PKB) inhibition, which induced the translocation of forkhead box O1 and pancreatic duodenal homeobox-1, followed by reduced insulin expression and secretion. In conclusion, NOX2-derived ROS could play a critical role in high glucose-induced β-cell dysfunction through PTEN-dependent JNK activation and AKT inhibition.  相似文献   

8.
The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2?-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called ‘Trimera’, composed of the essential domains of the cytosolic proteins p47phox (aa 1–286), p67phox (aa 1–212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.  相似文献   

9.
10.
The superoxide-generating NADPH oxidase complex of phagocytes consists of a membranal heterodimeric flavocytochrome (cytochrome b(559)), composed of gp91(phox) and p22(phox) subunits, and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). All redox stations involved in electron transport from NADPH to oxygen are located in gp91(phox). NADPH oxidase activation is the consequence of assembly of cytochrome b(559) with cytosolic proteins, a process reproducible in a cell-free system, consisting of phagocyte membranes, and recombinant cytosolic components, activated by an anionic amphiphile. p22(phox) is believed to act as a linker between the cytosolic components and gp91(phox). We applied "peptide walking" to mapping of domains in p22(phox) participating in NADPH oxidase assembly. Ninety one synthetic overlapping pentadecapeptides, spanning the p22(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in the cell-free system and to bind individual cytosolic NADPH oxidase components. We conclude the following. 1) The p22(phox) subunit of cytochrome b(559) serves as an anchor for both p47(phox) and p67(phox). 2) p47(phox) binds not only to the proline-rich region, located at residues 151-160 in the cytosolic C terminus of p22(phox), but also to a domain (residues 51-63) located on a loop exposed to the cytosol. 3) p67(phox) shares with p47(phox) the ability to bind to the proline-rich region (residues 151-160) and also binds to two additional domains, in the cytosolic loop (residues 81-91) and at the start of the cytosolic tail (residues 111-115). 4) The binding affinity of p67(phox) for p22(phox) peptides is lower than that of p47(phox). 5) Binding of both p47(phox) and p67(phox) to proline-rich p22(phox) peptides occurs in the absence of an anionic amphiphile. A revised membrane topology model of p22(phox) is proposed, the core of which is the presence of a functionally important cytosolic loop (residues 51-91).  相似文献   

11.
Several essential components of NADPH oxidase, including p22phox, gp91phox (nox2) and its homologs nox1 and nox4, p47phox, p67phox, and rac1, are present in the vasculature. We previously reported that p67phox is essential for adventitial fibroblast NADPH oxidase O2- production. Thus we postulated that inhibition of adventitial p67phox activity would attenuate angioplasty-induced hyperplasia. To test this hypothesis, we treated the adventitia of carotid arteries with a control adenovirus (Ad-control), a virus expressing dominant-negative p67phox (Ad-p67dn), or a virus expressing a competitive peptide (gp91ds) targeting the p47phox-gp91phox interaction (Ad-gp91ds). Common carotid arteries (CCAs) from male Sprague-Dawley rats were transfected with Ad-control, Ad-p67dn, or Ad-gp91ds in pluronic gel. After 2 days, a 2-F (Fogarty) catheter was used to injure CCAs in vivo. After 14 days, CCAs were perfusion-fixed and analyzed. In 13 experiments, digital morphometry suggested a reduction of neointimal hyperplasia with Ad-p67dn compared with Ad-control; however, the reduction did not reach statistical significance (P = 0.058). In contrast, a significant reduction was achieved with Ad-gp91ds (P = 0.006). No changes in medial area or remodeling were observed with either treatment. Moreover, adventitial fibroblast proliferation in vitro was inhibited by Ad-gp91ds but not by Ad-p67dn, despite confirmation that Ad-p67dn inhibits NADPH oxidase in fibroblasts. These data appear to suggest that a multicomponent vascular NADPH oxidase plays a role in neointimal hyperplasia. However, inhibition of p47phox may be more effective than inhibition of p67phox at attenuating neointimal growth.  相似文献   

12.
Phosphorylated p40PHOX as a negative regulator of NADPH oxidase   总被引:5,自引:0,他引:5  
The leukocyte NADPH oxidase catalyzes the production of O(2)(-) from oxygen at the expense of NADPH. Activation of the enzyme requires interaction of the cytosolic factors p47(PHOX), p67(PHOX), and Rac2 with the membrane-associated cytochrome b(558). Activation of the oxidase in a semirecombinant cell-free system in the absence of an amphiphilic activator can be achieved by phosphorylation of the cytosolic factor p47(PHOX) by protein kinase C. Another cytosolic factor, p40(PHOX), was recently shown to be phosphorylated on serine and threonine residues upon activation of NADPH oxidase, but both stimulatory and inhibitory roles were reported. In the present study, we demonstrate that the addition of phosphorylated p40(PHOX) to the cell-free system inhibits NADPH oxidase activated by protein kinase C-phosphorylated p47(PHOX), an effect not observed with the unphosphorylated p40(PHOX). Moreover phosphorylated p40(PHOX) inhibits the oxidase if added before or after full activation of the enzyme. Direct mutagenesis of protein kinase C consensus sites enables us to conclude that phosphorylation of threonine 154 is required for the inhibitory effect of p40(PHOX) to occur. Although the phosphorylated mutants and nonphosphorylated mutants are still able to interact with both p47(PHOX) and p67(PHOX) in pull-down assays, their proteolysis pattern upon thrombin treatment suggests a difference in conformation between the phosphorylated and nonphosphorylated mutants. We postulate that phosphorylation of p40(PHOX) on threonine 154 leads to an inhibitory conformation that shifts the balance toward an inhibitory role and blocks oxidase activation.  相似文献   

13.
We report here the presence of an NADPH oxidase (NOX) activity both in intact and in isolated transverse tubules and in triads isolated from mammalian skeletal muscle, as established by immunochemical, enzymatic, and pharmacological criteria. Immunohistochemical determinations with NOX antibodies showed that the gp91(phox) membrane subunit and the cytoplasmic regulatory p47(phox) subunit co-localized in transverse tubules of adult mice fibers with the alpha1s subunit of dihydropyridine receptors. Western blot analysis revealed that isolated triads contained the integral membrane subunits gp91(phox) and p22(phox), which were markedly enriched in isolated transverse tubules but absent from junctional sarcoplasmic reticulum vesicles. Isolated triads and transverse tubules, but not junctional sarcoplasmic reticulum, also contained varying amounts of the cytoplasmic NOX regulatory subunits p47(phox) and p67(phox). NADPH or NADH elicited superoxide anion and hydrogen peroxide generation by isolated triads; both activities were inhibited by NOX inhibitors but not by rotenone. NADH diminished the total thiol content of triads by one-third; catalase or apocynin, a NOX inhibitor, prevented this effect. NADPH enhanced the activity of ryanodine receptor type 1 (RyR1) in triads, measured through [3H]ryanodine binding and calcium release kinetics, and increased significantly RyR1 S-glutathionylation over basal levels. Preincubation with reducing agents or NOX inhibitors abolished the enhancement of RyR1 activity produced by NADPH and prevented NADPH-induced RyR1 S-glutathionylation. We propose that reactive oxygen species generated by the transverse tubule NOX activate via redox modification the neighboring RyR1 Ca2+ release channels. Possible implications of this putative mechanism for skeletal muscle function are discussed.  相似文献   

14.
Nisimoto Y  Ogawa H  Miyano K  Tamura M 《Biochemistry》2004,43(29):9567-9575
A series of truncated forms of His(6)-tagged gp91phox were expressed, solubilized, and purified in the presence of 30 microM FAD. The truncated gp91phox with the longest sequence in the C-terminal region (221-570) (gp91C) showed the highest activity (turnover rate, 0.92) for NADPH diaphorase in the presence of either 0.3% Triton X-100 or 0.5% Genapol X-80. Activity was not inhibited by superoxide dismutase but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. The flavinated gp91C contained approximately 0.9 mol of FAD/mol of protein (MW 46 kDa) and 12% alpha-helix content. In the absence of p47phox, p67phox showed considerable activation of gp91C in the presence of Rac. Carboxyl-terminal truncated p67phox (1-210) (p67N), which is the minimal active fragment, was fused with Rac or Q61LRac. The fusion protein p67N-Rac (or p67N-Q61LRac) showed a 2-fold higher stimulatory effect on NBT reductase activity of gp91C than the combination of the individual cytosolic p67N and Rac proteins. In contrast, Rac-p67N, a fusion with the opposite orientation, showed a smaller significant effect on the enzyme activity. The EC(50) values for p67phox, p67N, p67N-Rac, and Rac-p67N were 8.00. 4.35, 2.56, and 15.2 microM, respectively, while the K(m) value for NADPH in the presence and absence of the cytosolic components was almost the same (40-55 microM). In the presence of Rac, p67N or p67phox bound to gp91C with a molar ratio of approximately 1:1 but neither p67N nor Rac alone showed significant binding.  相似文献   

15.
The leukocyte NADPH oxidase is an enzyme present in phagocytes and B lymphocytes that when activated catalyzes the production of O-2 from oxygen at the expense of NADPH. A correlation between the activation of the oxidase and the phosphorylation of p47(PHOX), a cytosolic oxidase component, is well recognized in whole cells, and direct evidence for a relationship between the phosphorylation of this oxidase component and the activation of the oxidase has been obtained in a number of cell-free systems containing neutrophil membrane and cytosol. Using superoxide dismutase-inhibitable cytochrome c reduction to quantify O-2 production, we now show that p47(PHOX) phosphorylated by protein kinase C activates the NADPH oxidase not only in a cell-free system containing neutrophil membrane and cytosol, but also in a system in which the cytosol is replaced by the recombinant proteins p67(PHOX), Rac2, and phosphorylated p47(PHOX), suggesting that neutrophil plasma membrane plus those three cytosolic proteins are both necessary and sufficient for oxidase activation. In both the cytosol-containing and recombinant cell-free systems, however, activation by SDS yielded greater rates of O-2 production than activation by protein kinase C-phosphorylated p47(PHOX), indicating that a system that employs protein kinase C-phosphorylated p47(PHOX) as the sole activating agent, although more physiological than the SDS-activated system, is nevertheless incomplete.  相似文献   

16.
Recently, we showed that cultured guinea pig gastric pit cells possess a phagocyte NADPH oxidase-like activity, which was up-regulated by Helicobacter pylori lipopolysaccharide. We demonstrate here that these cells express all of the phagocyte NADPH oxidase components (gp91-, p22-, p67-, p47-, and p40-phoxes). Treatment with lipopolysaccharide increased the expression of gp91-, p22-, and p67-phoxes, but not that of p47- and p40-phoxes. Intriguingly, the p67-phox expression consistently correlated with up-regulation of superoxide anion-producing ability. Thus, the gastric pit cell NADPH oxidase may play an important role in regulation of the inflammatory response associated with H. pylori infection.  相似文献   

17.
Site-directed mutagenesis was used to generate a series of mutants harboring point or multiple substitutions within the hydrophilic, polybasic domain of gp91(phox) encompassed by residues 86-102, which was previously identified as a site of interaction with p47(phox) during phagocyte NADPH oxidase assembly. Recombinant wild-type or mutant gp91(phox) was expressed in a human myeloid leukemia cell line in which the endogenous gp91(phox) gene was disrupted by gene targeting. NADPH oxidase activity was measured in a cytochrome c reduction assay following granulocytic differentiation of cells that expressed recombinant gp91(phox). Expression of a gp91(phox) mutant in which amino acids 89-97 were replaced with nine alternate amino acids abolished NADPH oxidase activity. Expression of gp91(phox) mutants R89T, D95A, D95R, R96A, R96E, or K102T did not significantly affect NADPH oxidase activity. However, mutations of individual or paired arginine residues at positions 91 and 92 had substantial effects on superoxide generation. The R91E/R92E mutation completely abolished both NADPH oxidase activity and membrane-translocation of the cytosolic oxidase proteins p47(phox), p67(phox), Rac1, and Rac2. The phorbol 12-myristate 13-acetate-induced rate of superoxide production was reduced by approximately 75% in cells expressing R91T/R92A, R91E, or R92E gp91(phox) along with an increased lag time to the maximal rates of superoxide production relative to cells expressing wild-type gp91(phox). Taken together, these results demonstrate that Arg91 and Arg92 of gp91(phox) are essential for flavocytochrome b558 function in granulocytes and suggest that these residues participate in the interaction of gp91(phox) with the cytosolic oxidase proteins.  相似文献   

18.
The NADPH oxidase (NOX) family of enzymes oxidase catalyzes the transport of electrons from NADPH to molecular oxygen and generates O(2)(?-), which is rapidly converted into H(2)O(2). We aimed to identify in hepatocytes the protein NOX complex responsible for H(2)O(2) synthesis after α(1)-adrenoceptor (α(1)-AR) stimulation, its activation mechanism, and to explore H(2)O(2) as a potential modulator of hepatic metabolic routes, gluconeogenesis, and ureagenesis, stimulated by the ARs. The dormant NOX2 complex present in hepatocyte plasma membrane (HPM) contains gp91(phox), p22(phox), p40(phox), p47(phox), p67(phox) and Rac 1 proteins. In HPM incubated with NADPH and guanosine triphosphate (GTP), α(1)-AR-mediated H(2)O(2) synthesis required all of these proteins except for p40(phox). A functional link between α(1)-AR and NOX was identified as the Gα(13) protein. Alpha(1)-AR stimulation in hepatocytes promotes Rac1-GTP generation, a necessary step for H(2)O(2) synthesis. Negative cross talk between α(1)-/β-ARs for H(2)O(2) synthesis was observed in HPM. In addition, negative cross talk of α(1)-AR via H(2)O(2) to β-AR-mediated stimulation was recorded in hepatocyte gluconeogenesis and ureagenesis, probably involving aquaporine activity. Based on previous work we suggest that H(2)O(2), generated after NOX2 activation by α(1)-AR lightening in hepatocytes, reacts with cAMP-dependent protein kinase A (PKA) subunits to form an oxidized PKA, insensitive to cAMP activation that prevented any rise in the rate of gluconeogenesis and ureagenesis.  相似文献   

19.
Dang PM  Johnson JL  Babior BM 《Biochemistry》2000,39(11):3069-3075
The nicotinamide adenine dinucleotide phosphate (NADPH) binding site of the NADPH oxidase complex is believed to be located on the beta, subunit of cytochrome b558. However, our previous studies showed that p67PHOX also contains an NADPH binding site that is essential for normal oxidase activity and that p67PHOX is able to mediate a slow electron transfer from a reduced pyridine nucleotide to an artificial electron acceptor. Using both affinity labeling and fluorescence quenching, we have obtained further evidence that p67PHOX is able to bind NADPH. We have used a number of truncated forms of p67PHOX, including p67PHOX(1-243), p67PHOX(1-210), p67PHOX(1-199), and p67PHOX(244-526) (where the numbers represent the initial and final amino acids in the truncated p67PHOX) in order to localize the binding site. We found that NADPH could bind to p67PHOX(1-243), p67PHOX(1-210), and p67PHOX(1-199) but not to p67PHOX(244-526). The p67PHOX(1-199) fragment consists largely of four tetratricopeptide (TPR) domains. We showed further that Rac2-GTP gamma S and to a lesser extent Rac2-GDP beta S could modulate the binding of NADPH to p67PHOX.  相似文献   

20.
Two novel proteins activate superoxide generation by the NADPH oxidase NOX1   总被引:16,自引:0,他引:16  
NOX1, an NADPH oxidase expressed predominantly in colon epithelium, shows a high degree of similarity to the phagocyte NADPH oxidase. However, superoxide generation by NOX1 has been difficult to demonstrate. Here we show that NOX1 generates superoxide when co-expressed with the p47(phox) and p67(phox) subunits of the phagocyte NADPH oxidase but not when expressed by itself. Since p47(phox) and p67(phox) are restricted mainly to myeloid cells, we searched for their homologues and identified two novel cDNAs. The mRNAs of both homologues were found predominantly in colon epithelium. Differences between the homologues and the phagocyte NADPH oxidase subunits included the lack of the autoinhibitory domain and the protein kinase C phosphorylation sites in the p47(phox) homologue as well as the absence of the first Src homology 3 domain and the presence of a hydrophobic stretch in the p67(phox) homologue. Co-expression of NOX1 with the two novel proteins led to stimulus-independent high level superoxide generation. Stimulus dependence of NOX1 was restored when p47(phox) was used to replace its homologue. In conclusion, NOX1 is a superoxide-generating enzyme that is activated by two novel proteins, which we propose to name NOXO1 (NOX organizer 1) and NOXA1 (NOX activator 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号