首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: HIV-1 antiviral resistance is a major cause of antiviral treatment failure. The in vivo fitness landscape experienced by the virus in presence of treatment could in principle be used to determine both the susceptibility of the virus to the treatment and the genetic barrier to resistance. We propose a method to estimate this fitness landscape from cross-sectional clinical genetic sequence data of different subtypes, by reverse engineering the required selective pressure for HIV-1 sequences obtained from treatment naive patients, to evolve towards sequences obtained from treated patients. The method was evaluated for recovering 10 random fictive selective pressures in simulation experiments, and for modeling the selective pressure under treatment with the protease inhibitor nelfinavir. RESULTS: The estimated fitness function under nelfinavir treatment considered fitness contributions of 114 mutations at 48 sites. Estimated fitness correlated significantly with the in vitro resistance phenotype in 519 matched genotype-phenotype pairs (R(2) = 0.47 (0.41 - 0.54)) and variation in predicted evolution under nelfinavir selective pressure correlated significantly with observed in vivo evolution during nelfinavir treatment for 39 mutations (with FDR = 0.05). AVAILABILITY: The software is available on request from the authors, and data sets are available from http://jose.med.kuleuven.be/~kdforc0/nfv-fitness-data/.  相似文献   

2.
The human immunodeficiency virus type 1 (HIV-1) protease mutation D30N is exclusively selected by the protease inhibitor (PI) nelfinavir and confers resistance to this drug. We demonstrate that D30N increases the susceptibility to saquinavir (SQV) and amprenavir in HIV-1 subtype B isolates and that the N88D mutation in a D30N background neutralizes this effect. D30N also suppresses indinavir (IDV) resistance caused by the M46I mutation. Interestingly, in patients with viruses originally containing the D30N mutation who were treated with IDV or SQV, the virus either reversed this mutation or acquired N88D, suggesting an antagonistic effect of D30N upon exposure to these PIs. These findings can improve direct salvage drug treatment in resource limited countries where subtype B is epidemiologically important and extend the value of first and second line PIs in these populations.  相似文献   

3.
Amprenavir (Agenerase, 141-W94, VX-478) is a human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PRI) recently approved for the treatment of HIV-1 infection in the United States. A major cause of treatment failure is the development of resistance to PRIs. One potential use for amprenavir is as salvage therapy for patients for whom treatment that includes one (or more) of the other four currently approved PRIs-saquinavir, indinavir, ritonavir, and nelfinavir-has failed. We evaluated the cross-resistance to amprenavir of viruses that evolved during treatment with the two most commonly prescribed PRIs, nelfinavir and indinavir. Unexpectedly, a dramatic increase in susceptibility (2.5- to 12. 5-fold) was observed with 20 of 312 (6.4%) patient viruses analyzed. The most pronounced increases in susceptibility were strongly associated with an N88S mutation in protease. All viruses that carried the N88S mutation were hypersensitive to amprenavir. Site-directed mutagenesis studies confirmed the causal role of N88S in determining amprenavir hypersensitivity. The presence of the N88S mutation and associated amprenavir hypersensitivity may be useful in predicting an improved clinical response to amprenavir salvage therapy.  相似文献   

4.
Nelfinavir is an inhibitor of HIV-1 protease, and is used for treatment of patients suffering from HIV/AIDS. However, treatment results in drug resistant mutations in HIV-1 protease. N88D and N88S are two such mutations which occur in the non-active site region of the enzyme. We have determined crystal structures of unliganded N88D and N88S mutants of HIV-1 protease to resolution of 1.65 Å and 1.8 Å, respectively. These structures refined against synchrotron data lead to R-factors of 0.1859 and 0.1780, respectively. While structural effects of N88D are very subtle, the mutation N88S has caused a significant conformational change in D30, an active site residue crucial for substrate and inhibitor binding.  相似文献   

5.
Development of resistance mutations in enzymatic targets of human immunodeficiency virus 1 (HIV-1) hampers the ability to provide adequate therapy. Of special interest is the effect mutations outside the active site of HIV-1 protease have on inhibitor binding and virus viability. We engineered protease mutants containing the active site mutation D30N alone and with the nonactive site polymorphisms M36I and/or A71V. We determined the K(i) values for the inhibitors nelfinavir, ritonavir, indinavir, KNI272, and AG1776 as well as the catalytic efficiency of the mutants. Single and double mutation combinations exhibited a decrease in catalytic efficiency, while the triple mutant displayed catalytic efficiency greater than that of the wild type. Variants containing M36I or A71V alone did not display a significant change in binding affinities to the inhibitors tested. The variant containing mutation D30N displayed a 2-6-fold increase in K(i) for all inhibitors tested, with nelfinavir showing the greatest increase. The double mutants containing a combination of mutations D30N, M36I, and A71V displayed -0.5-fold to +6-fold changes in the K(i) of all inhibitors tested, with ritonavir and nelfinavir most affected. Only the triple mutant showed a significant increase (>10-fold) in K(i) for inhibitor nelfinavir, ritonavir, or AG-1776 displaying 22-, 19-, or 15-fold increases, respectively. Our study shows that the M36I and A71V mutations provide a greater level of inhibitor cross-resistance combined with active site mutation D30N. M36I and A71V, when present as natural polymorphisms, could aid the virus in developing active site mutations to escape inhibitor binding while maintaining catalytic efficiency.  相似文献   

6.
The HIV-1 protease is a major target of inhibitor drugs in AIDS therapies. The therapies are impaired by mutations of the HIV-1 protease that can lead to resistance to protease inhibitors. These mutations are classified into major mutations, which usually occur first and clearly reduce the susceptibility to protease inhibitors, and minor, accessory mutations that occur later and individually do not substantially affect the susceptibility to inhibitors. Major mutations are predominantly located in the active site of the HIV-1 protease and can directly interfere with inhibitor binding. Minor mutations, in contrast, are typically located distal to the active site. A central question is how these distal mutations contribute to resistance development. In this article, we present a systematic computational investigation of stability changes caused by major and minor mutations of the HIV-1 protease. As most small single-domain proteins, the HIV-1 protease is only marginally stable. Mutations that destabilize the folded, active state of the protease therefore can shift the conformational equilibrium towards the unfolded, inactive state. We find that the most frequent major mutations destabilize the HIV-1 protease, whereas roughly half of the frequent minor mutations are stabilizing. An analysis of protease sequences from patients in treatment indicates that the stabilizing minor mutations are frequently correlated with destabilizing major mutations, and that highly resistant HIV-1 proteases exhibit significant fractions of stabilizing mutations. Our results thus indicate a central role of minor mutations in balancing the marginal stability of the protease against the destabilization induced by the most frequent major mutations.  相似文献   

7.
Many patterns of mutations selected by HIV-1 protease inhibitors have been described, but in most cases isolates with these patterns have been obtained from pre-clinical studies or after failures of monotherapies. We compared genotype and phenotype in HIV-1 infected patients who have failed more than one PI-including regimen. Phenotypic resistance could arise also in the absence of specific primary mutations and in the presence of different substitutions among those known to confer resistance to ritonavir, indinavir or nelfinavir. The number of secondary mutations was significantly associated with phenotypic resistance for each protease inhibitor. Thus, more study of mutational patterns in heavily pretreated patients is warranted; in the mean time treatment choices might be optimized if phenotyping could integrate genotyping within this setting.  相似文献   

8.
9.
Increased susceptibility to the protease inhibitors saquinavir and amprenavir has been observed in human immunodeficiency virus type 1 (HIV-1) with specific mutations in protease (V82T and N88S). Increased susceptibility to ritonavir has also been described in some viruses from antiretroviral agent-naive patients with primary HIV-1 infection in association with combinations of amino acid changes at polymorphic sites in the protease. Many of the viruses displaying increased susceptibility to protease inhibitors also had low replication capacity. In this retrospective study, we analyze the drug susceptibility phenotype and the replication capacity of virus isolates obtained at the peaks of viremia during five consecutive structured treatment interruptions in 12 chronically HIV-1-infected patients. Ten out of 12 patients had at least one sample with protease inhibitor hypersusceptibility (change 相似文献   

10.
Muzammil S  Ross P  Freire E 《Biochemistry》2003,42(3):631-638
A major problem in the chemotherapy of HIV-1 infection is the appearance of drug resistance. In the case of HIV-1 protease inhibitors, resistance originates from mutations in the protease molecule that lower the affinity of inhibitors while still maintaining a viable enzymatic profile. Drug resistance mutations can be classified as active site or non-active site mutations depending on their location within the protease molecule. Active site mutations directly affect drug/target interactions, and their action can be readily understood in structural terms. Non-active site mutations influence binding from distal locations, and their mechanism of action is not immediately apparent. In this paper, we have characterized a mutant form of the HIV-1 protease, ANAM-11, identified in clinical isolates from HIV-1 infected patients treated with protease inhibitors. This mutant protease contains 11 mutations, 10 of which are located outside the active site (L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93L) and 1 within the active site (I84V). ANAM-11 lowers the binding affinity of indinavir, nelfinavir, saquinavir, and ritonavir by factors of 4000, 3300, 5800, and 80000, respectively. Surprisingly, most of the loss in inhibitor affinity is due to the non-active site mutations as demonstrated by additional experiments performed with a protease containing only the 10 non-active site mutations (NAM-10) and another containing only the active site mutation (A-1). Kinetic analysis with two different substrates yielded comparable catalytic efficiencies for A-1, ANAM-11, NAM-10, and the wild-type protease. These studies demonstrate that non-active site mutations can be the primary source of resistance and that their role is not necessarily limited to compensate deleterious effects of active site mutations. Analysis of the structural stability of the proteases by differential scanning calorimetry reveals that ANAM-11 and NAM-10 are structurally more stable than the wild-type protease while A-1 is less stable. Together, the binding and structural thermodynamic results suggest that the non-active site mutants affect inhibitor binding by altering the geometry of the binding site cavity through the accumulation of mutations within the core of the protease molecule.  相似文献   

11.
A series of HIV-1 protease mutants has been designed in an effort to analyze the contribution to drug resistance provided by natural polymorphisms as well as therapy-selective (active and non-active site) mutations in the HIV-1 CRF_01 A/E (AE) protease when compared to that of the subtype B (B) protease. Kinetic analysis of these variants using chromogenic substrates showed differences in substrate specificity between pretherapy B and AE proteases. Inhibition analysis with ritonavir, indinavir, nelfinavir, amprenavir, saquinavir, lopinavir, and atazanavir revealed that the natural polymorphisms found in A/E can influence inhibitor resistance. It was also apparent that a high level of resistance in the A/E protease, as with B protease, is due to it aquiring a combination of active site and non-active site mutations. Structural analysis of atazanavir bound to a pretherapy B protease showed that the ability of atazanavir to maintain its binding affinity for variants containing some resistance mutations is due to its unique interactions with flap residues. This structure also explains why the I50L and I84V mutations are important in decreasing the binding affinity of atazanavir.  相似文献   

12.
13.
The majority of HIV-1 infections around the world result from non-B clade HIV-1 strains. The CRF01_AE (AE) strain is seen principally in Southeast Asia. AE protease differs by ∼10% in amino acid sequence from clade B protease and carries several naturally occurring polymorphisms that are associated with drug resistance in clade B. AE protease has been observed to develop resistance through a nonactive-site N88S mutation in response to nelfinavir (NFV) therapy, whereas clade B protease develops both the active-site mutation D30N and the nonactive-site mutation N88D. Structural and biochemical studies were carried out with wild-type and NFV-resistant clade B and AE protease variants. The relationship between clade-specific sequence variations and pathways to inhibitor resistance was also assessed. AE protease has a lower catalytic turnover rate than clade B protease, and it also has weaker affinity for both NFV and darunavir (DRV). This weaker affinity may lead to the nonactive-site N88S variant in AE, which exhibits significantly decreased affinity for both NFV and DRV. The D30N/N88D mutations in clade B resulted in a significant loss of affinity for NFV and, to a lesser extent, for DRV. A comparison of crystal structures of AE protease shows significant structural rearrangement in the flap hinge region compared with those of clade B protease and suggests insights into the alternative pathways to NFV resistance. In combination, our studies show that sequence polymorphisms within clades can alter protease activity and inhibitor binding and are capable of altering the pathway to inhibitor resistance.Human immunodeficiency virus type 1 (HIV-1) is classified into three groups (M, N, and O), of which group M is further classified into nine major clades (A, B, C, D, F, G, H, J, and K) and 43 circulating recombinant forms (CRFs) based on viral genomic diversity (32, 37). The majority of HIV-1 infections across the globe result from non-B clade HIV-1 variants; clade B accounts for only ∼12% of infections (15). However, the development of currently available anti-HIV therapies has been based on the virology of clade B variants. In recent years, several studies have shown that there are clear differences between clades when it comes to viral transmission and the progression to AIDS, an observation which raises questions about the effectiveness of the currently available anti-HIV therapies against the other clades and CRFs (16-18, 39).HIV-1 protease has been an important drug target in the global effort to curb the progression from HIV infection to AIDS. However, the accumulation of drug-resistant mutations in the protease gene has been a major drawback in using HIV-1 protease inhibitors. The effects of mutations associated with drug resistance in HIV-1 clade B protease have been studied extensively over the years. For the most part, resistance mutation patterns are very similar in HIV-1 clade B and non-B clade proteases (19). However, several alternative resistance pathways have been observed for non-B clade proteases compared with those of clade B protease (1, 12, 13, 26). Limited data are available on how sequence polymorphisms, some of which are associated with drug resistance in clade B protease, might influence the pathway to drug resistance in non-B clade proteases. Furthermore, very little is understood about how sequence polymorphisms in non-B clade proteases affect protease function and inhibitor binding.HIV-1 CRF01_AE (AE) was the first CRF to be observed in patient populations and is seen principally in Southeast Asia (2, 10, 25). AE protease differs by ∼10% in amino acid sequence from that of clade B protease (Fig. (Fig.1A).1A). Interestingly, AE protease develops a different resistance pathway from that of clade B protease to confer resistance to the protease inhibitor nelfinavir (NFV) (1). In patients infected with AE, the protease acquires predominantly the N88S mutation in response to NFV therapy, whereas in patients with clade B infection, the protease acquires the D30N/N88D mutations. The fitness of AE viral strains is thought to be similar to that of HIV-1 group M viral strains (11, 41). However, the effect of AE-specific sequence variations as well as drug resistance substitutions on viral fitness has not been studied extensively.Open in a separate windowFIG. 1.(A) Amino acid sequence alignments of B-WT and AE-WT and NFV-resistant mutants. Residue positions that differ between clade B and AE are indicated in red. NFV resistance mutations are indicated in blue. (B) Ribbon diagram superposition of DRVAE-WT (blue) and DRVAE-N88S (gray). (C) Double-difference plot comparing DRVAE-WT and DRVAE-N88S. (D) Ribbon diagram superposition of clade DRVAE-WT (magenta) and clade DRVB-WT (gray). (E) Double-difference plot comparing DRVAE-WT and DRVB-WT. The color contours in the double-difference plots indicate distance differences of <1.0 Å (black), 1.0 to 0.5 Å (green), 0.5 to 1.0 Å (blue), and >1.0 Å (red).In the present study, biochemical and biophysical methods were used to determine the effect of sequence polymorphisms in AE protease on enzyme activity and inhibitor binding. Through determination of crystal structures and analysis of changes in hydrogen bonding patterns, a structural rationalization is described for the two different pathways observed for clade B and AE proteases to attain resistance to NFV.  相似文献   

14.
15.
The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.  相似文献   

16.
The Human Immunodeficiency Virus type 1 protease enzyme (HIV-1 PR) is one of the most important targets of antiretroviral therapy used in the treatment of AIDS patients. The success of protease-inhibitors (PIs), however, is often limited by the emergence of protease mutations that can confer resistance to a specific drug, or even to multiple PIs. In the present study, we used bioinformatics tools to evaluate the impact of the unusual mutations D30V and V32E over the dynamics of the PR-Nelfinavir complex, considering that codons involved in these mutations were previously related to major drug resistance to Nelfinavir. Both studied mutations presented structural features that indicate resistance to Nelfinavir, each one with a different impact over the interaction with the drug. The D30V mutation triggered a subtle change in the PR structure, which was also observed for the well-known Nelfinavir resistance mutation D30N, while the V32E exchange presented a much more dramatic impact over the PR flap dynamics. Moreover, our in silico approach was also able to describe different binding modes of the drug when bound to different proteases, identifying specific features of HIV-1 subtype B and subtype C proteases.  相似文献   

17.
Protein evolution has occurred by successive fixation of individual mutations. The probability of fixation depends on the fitness of the mutation, and the arising variant can be deleterious, neutral, or beneficial. Despite its relevance, only few studies have estimated the distribution of fitness effects caused by random single mutations on protein function. The human immunodeficiency virus type 1 (HIV-1) protease was chosen as a model protein to quantify protein's tolerability to random single mutations. After determining the enzymatic activity of 107 single random mutants, we found that 86% of single mutations were deleterious for the enzyme catalytic efficiency and 54% lethal. Only 2% of the mutations significantly increased the catalytic efficiency of the enzyme. These data demonstrate the vulnerability of HIV-1 protease to single random mutations. When a second random mutagenesis library was constructed from an HIV-1 protease carrying a highly deleterious single mutation (D30N), a higher proportion of mutations with neutral or beneficial effect were found, 26% and 9%, respectively. Importantly, antagonist epistasis was observed between deleterious mutations. In particular, the mutation N88D, lethal for the wild-type protease, restored the wild-type catalytic efficiency when combined with the highly deleterious mutation D30N. The low tolerability to single random substitutions shown here for the wild-type HIV-1 protease contrasts with its in vivo ability to generate an adaptive variation. Thus, the antagonist epistasis between deleterious or lethal mutations may be responsible for increasing the protein mutational robustness and evolvability.  相似文献   

18.
To determine the influence of human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells on the development of drug resistance mutations in the HIV-1 protease, we analyzed protease sequences from viruses from a human leukocyte antigen class I (HLA class I)-typed cohort of 94 HIV-1-positive individuals. In univariate statistical analyses (Fisher's exact test), minor and major drug resistance mutations as well as drug-associated polymorphisms showed associations with HLA class I alleles. All correlations with P values of 0.05 or less were considered to be relevant without corrections for multiple tests. A subset of these observed correlations was experimentally validated by enzyme-linked immunospot assays, allowing the definition of 10 new epitopes recognized by CD8+ T cells from patients with the appropriate HLA class I type. Several drug resistance-associated mutations in the protease acted as escape mutations; however, cells from many patients were still able to generate CD8+ T cells targeting the escape mutants. This result presumably indicates the usage of different T-cell receptors by CD8+ T cells targeting these epitopes in these patients. Our results support a fundamental role for HLA class I-restricted immune responses in shaping the sequence of the HIV-1 protease in vivo. This role may have important clinical implications both for the understanding of drug resistance pathways and for the design of therapeutic vaccines targeting drug-resistant HIV-1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号