共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome structure and eukaryotic gene organization 总被引:1,自引:0,他引:1
Daniel Kitsberg Sara Selig Howard Cedar 《Current opinion in genetics & development》1991,1(4):534-537
The DNA in the eukaryotic nucleus is highly compacted but well organized into distinct regional units. Chromosomal bands are characterized by their structure and distinctive replication time. They are subdivided into chromatin loops which serve as functional domains that have discrete boundary elements and can be regulated during development. 相似文献
2.
DNA replication initiates at chromosomal positions called replication origins. This review will focus on the activity, regulation and roles of replication origins in Saccharomyces cerevisiae. All eukaryotic cells, including S. cerevisiae, depend on the initiation (activity) of hundreds of replication origins during a single cell cycle for the duplication of their genomes. However, not all origins are identical. For example, there is a temporal order to origin activation with some origins firing early during the S-phase and some origins firing later. Recent studies provide evidence that posttranslational chromatin modifications, heterochromatin-binding proteins and nucleosome positioning can control the efficiency and/or timing of chromosomal origin activity in yeast. Many more origins exist than are necessary for efficient replication. The availability of excess replication origins leaves individual origins free to evolve distinct forms of regulation and/or roles in chromosomes beyond their fundamental role in DNA synthesis. We propose that some origins have acquired roles in controlling chromatin structure and/or gene expression. These roles are not linked obligatorily to replication origin activity per se, but instead exploit multi-subunit replication proteins with the potential to form context-dependent protein-protein interactions. 相似文献
3.
Tom A. Williams T. Martin Embley 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1678)
The origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners. The inference and interpretation of phylogenetic trees from genomic data remains at the centre of many of these debates, and there is increasing recognition that trees built using inadequate methods can prove misleading, whether describing the relationship of eukaryotes to other cells or the root of the universal tree. New statistical approaches show promise for addressing these questions but they come with their own computational challenges. The papers in this theme issue discuss recent progress on the origin of eukaryotic cells and genomes, highlight some of the ongoing debates, and suggest possible routes to future progress. 相似文献
4.
The two faces of higher eukaryotic DNA replication origins 总被引:24,自引:0,他引:24
5.
Alexander L. Dounce Subir K. Chanda Philip L. Townes 《Journal of theoretical biology》1973,42(2):275-285
Chromosomal structure has been analyzed from the standpoint of core structure and the relationship between interphase and metaphase chromosomal forms. A possible relationship between prokaryotic and eukaryotic chromosomes has also been proposed. The general structural plan offered is a series of DNA-histone loops extending laterally from a core held together by disulfide bond linkages. The models proposed have been derived from a loop model with core very recently proposed by H. Sobell. A short experimental section of this paper demonstrates that S-S cleaving agents as well as trypsin cause easily observable effects on human metaphase chromosomes. 相似文献
6.
Kornberg RD 《Biological chemistry》2001,382(8):1103-1107
7.
Richards TA Dacks JB Campbell SA Blanchard JL Foster PG McLeod R Roberts CW 《Eukaryotic cell》2006,5(9):1517-1531
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution. 相似文献
8.
More than 200 genes annotated as Na+/H+ hydrogen exchangers (NHEs) currently reside in bioinformation databases such as GenBank and Pfam. We performed detailed phylogenetic analyses of these NHEs in an effort to better understand their specific functions and physiological roles. This analysis initially required examining the entire monovalent cation proton antiporter (CPA) superfamily that includes the CPA1, CPA2, and NaT-DC families of transporters, each of which has a unique set of bacterial ancestors. We have concluded that there are nine human NHE (or SLC9A) paralogs as well as two previously unknown human CPA2 genes, which we have named HsNHA1 and HsNHA2. The eukaryotic NHE family is composed of five phylogenetically distinct clades that differ in subcellular location, drug sensitivity, cation selectivity, and sequence length. The major subgroups are plasma membrane (recycling and resident) and intracellular (endosomal/TGN, NHE8-like, and plant vacuolar). HsNHE1, the first cloned eukaryotic NHE gene, belongs to the resident plasma membrane clade. The latter is the most recent to emerge, being found exclusively in vertebrates. In contrast, the intracellular clades are ubiquitously distributed and are likely precursors to the plasma membrane NHE. Yeast endosomal ScNHX1 was the first intracellular NHE to be described and is closely related to HsNHE6, HsNHE7, and HsNHE9 in humans. Our results link the appearance of NHE on the plasma membrane of animal cells to the use of the Na+/K(+)-ATPase to generate the membrane potential. These novel observations have allowed us to use comparative biology to predict physiological roles for the nine human NHE paralogs and to propose appropriate model organisms in which to study the unique properties of each NHE subclass. 相似文献
9.
The evolutionary dynamics of eukaryotic gene order 总被引:11,自引:0,他引:11
10.
Background
The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. 相似文献11.
New beginnings in studies of eukaryotic DNA replication origins 总被引:35,自引:0,他引:35
12.
Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson''s paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. 相似文献
13.
14.
The structure and function of eukaryotic photosystem I 总被引:1,自引:0,他引:1
Eukaryotic photosystem I consists of two functional moieties: the photosystem I core, harboring the components for the light-driven charge separation and the subsequent electron transfer, and the peripheral light-harvesting complex (LHCI). While the photosystem I-core remained highly conserved throughout the evolution, with the exception of the oxidizing side of photosystem I, the LHCI complex shows a high degree of variability in size, subunits composition and bound pigments, which is due to the large variety of different habitats photosynthetic organisms dwell in. Besides summarizing the most current knowledge on the photosystem I-core structure, we will discuss the composition and structure of the LHCI complex from different eukaryotic organisms, both from the red and the green clade. Furthermore, mechanistic insights into electron transfer between the donor and acceptor side of photosystem I and its soluble electron transfer carrier proteins will be given. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. 相似文献
15.
Transcriptional elements as components of eukaryotic origins of DNA replication 总被引:114,自引:0,他引:114
M L DePamphilis 《Cell》1988,52(5):635-638
16.
T. Clason T. Ruiz H. Schägger G. Peng V. Zickermann U. Brandt H. Michel M. Radermacher 《Journal of structural biology》2010,169(1):81-88
The structures of the NADH dehydrogenases from Bos taurus and Aquifex aeolicus have been determined by 3D electron microscopy, and have been analyzed in comparison with the previously determined structure of Complex I from Yarrowia lipolytica. The results show a clearly preserved domain structure in the peripheral arm of complex I, which is similar in the bacterial and eukaryotic complex. The membrane arms of both eukaryotic complexes show a similar shape but also significant differences in distinctive domains. One of the major protuberances observed in Y. lipolytica complex I appears missing in the bovine complex, while a protuberance not found in Y. lipolytica connects in bovine complex I a domain of the peripheral arm to the membrane arm. The structural similarities of the peripheral arm agree with the common functional principle of all complex Is. The differences seen in the membrane arm may indicate differences in the regulatory mechanism of the enzyme in different species. 相似文献
17.
Antequera F 《The EMBO journal》2004,23(22):4365-4370
Identification of DNA replication origins (ORIs) at a genome-wide level in eukaryotes has proved to be difficult due to the high degree of degeneracy of their sequences. Recent structural and functional approaches, however, have circumvented this limitation and have provided reliable predictions of their genomic distribution in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and they have also significantly increased the number of characterized ORIs in animals. This article reviews recent evidence on how ORIs are specified and maintained in these systems and on their regulation and sensitivity to epigenetic signals. It also discusses the possible additional involvement of ORIs in processes other than DNA replication. 相似文献
18.
A question of time: replication origins of eukaryotic chromosomes. 总被引:21,自引:0,他引:21
19.
20.