首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Addition of oleate, oleyl alcohol, or palmitate to HeLa cell medium resulted in a rapid stimulation of PC synthesis and activation of CTP: phosphocholine cytidylyltransferase. Stimulation was optimal with 0.35 mM oleate, 0.3 mM oleyl alcohol and 5 mM palmitate, or 1 mM palmitate if EGTA were added to the medium. The cytidylyltransferase was activated by translocation of the inactive cytosolic form to membranes. In untreated cells approx. 30% of the total cytidylyltransferase was membrane bound, while in treated cells, 80-90% was membrane associated. Addition of bovine serum albumin (10 mg/ml) to cells previously treated with oleate (0.35 mM) rapidly removed cellular fatty acid, and the membrane-bound cytidylyltransferase activity returned to approx. 30%. Similar results were obtained by extraction of membranes with albumin in vitro. Although 95% of the free fatty acid was extracted, 30-40% of the membrane cytidylyltransferase remained bound. Translocation of cytidylyltransferase between isolated cytosol and microsomal fractions was promoted by addition of oleate, palmitate, oleyl alcohol, and monoolein. Addition of diacylglycerol, lysophosphatidylcholine, lysophosphatidylethanolamine, calcium palmitate, and detergents such as Triton X-100, cholate or Zwittergent did not stimulate translocation of the enzyme. Addition of oleoyl-CoA promoited translocation, however, 40% of it was hydrolyzed releasing free oleic acid. Cytosolic cytidylyltransferase bound to microsomes pre-treated with phospholipase C, which had 7-fold elevated diacylglycerol content. Fatty acid-promoted translocation was blocked by Triton X-100, but not by 1 M KCl. These results suggest that a variety of compounds with differing head group size and charge, and number of hydrocarbon chains can function as translocators, and that hydrophobic rather than ionic interactions mediate the binding of cytidylyltransferase to membranes.  相似文献   

2.
Anchored periplasmic expression (APEx) technology aims to express and localize proteins or peptides in the Escherichia coli periplasm. Some reports have suggested that transmembrane segments of integral membrane proteins can be used as membrane anchors in the APEx system. In this study, a series of hydrophobic anchors derived from the first putative transmembrane helix of a Bacillus subtilis integral membrane protein, MrpF, and its truncated forms were investigated for anchored periplasmic expression of alkaline phosphatase (PhoA) in E. coli. Anchoring efficiency of hydrophobic anchors was evaluated by monitoring the expression and activity of anchored PhoA. The length of hydrophobic anchors was found to be critical for anchoring proteins to cell membranes. This study may open new avenues for applying transmembrane segments derived from native membrane proteins as membrane anchors in the APEx system.  相似文献   

3.
The mechanism by which polyethylene glycol (PEG) mediates cell fusion has been studied by examining the movements of membrane lipids and proteins, as well as cytoplasmic markers, from erythrocytes to monolayers of cultured cells to which they have been fused. Fluorescence and freeze-fracture electron microscopy and fluorescence recovery after photobleaching have yielded the following results: (a) In the presence of both fusogenic and nonfusogenic PEG membranes are brought together at closely apposed contact regions. (b) Fluorescent lipid probes quickly spread from the membranes of erythrocytes to cultured cells in the presence of both fusogenic and nonfusogenic PEG. (c) Proteins of the erythrocyte membranes were never observed to diffuse into the cultured cell membrane. (d) Water-soluble proteins did not diffuse from the erythrocyte interior into the target cell cytoplasm until the PEG was removed. These data suggest that the coordinate action of two distinct components is necessary for fusion as mediated by PEG. Presumably, the polymer itself promotes close apposition of the adjacent cell membranes but the fusion stimulus is provided by the additives contained in commercial PEG.  相似文献   

4.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

5.
We have shown previously that the diphtheria toxin transmembrane domain (T) may function as a membrane anchor for soluble proteins fused at its C-terminus. Binding to membranes is triggered by acidic pH. Here, we further characterized this anchoring device. Soluble proteins may be fused at the N-terminus of the T domain or at both extremities, without modifying its membrane binding properties. This allows one to choose the orientation of the protein to be attached to the membrane. Maximum binding to the cell surface is reached within 1 h. Anchoring occurs on cells previously treated with proteinase K, suggesting that T interacts with the lipid phase of the membrane without the help of cell surface proteins. Binding does not permeabilize cells or affect cell viability, despite the fact that it permeabilizes liposomes and alters their structure. When attached to L929 fibroblasts, the proteins are not internalized and remain displayed at their surface for more than 24 h. When bound to K562 myeloid cells, the molecules are internalized and degraded. Thus, depending on the cell type, soluble proteins may be anchored to the surface of cells by the T domain for an extended time or directed towards an internalization pathway.  相似文献   

6.
Kato K  Umezawa K  Miyake M  Miyake J  Nagamune T 《BioTechniques》2004,37(3):444-8, 450, 452
Cell-based microarrays are emerging as a tool for analyzing the functions of genes in cells. However, partly due to the difficulty of cell immobilization, the application of this method has been limited to adherent cells. We previously reported a method that rapidly and strongly attached living nonadherent cells to glass slides modified with a cell membrane anchoring reagent, designated a biocompatible anchor for membrane (BAM). Here we demonstrate that plasmid DNA deposited in a defined area on BAM-modified glass slides was transfected into nonadherent K562 cells immobilized on the DNA-deposited and BAM-modified slides. This method allowed the transfection of K562 cells not only with plasmid cDNA expression vectors but also with small interfering RNA (siRNA) at a defined location on the BAM-modified slides. We expect this methodology to greatly expand the scope of current cell microarray technology.  相似文献   

7.
The amino acid sequence of the phage infection protein (Pip) of Lactococcus lactis predicts a multiple-membrane-spanning region, suggesting that Pip may be anchored to the plasma membrane. However, a near-consensus sortase recognition site and a cell wall anchoring motif may also be present near the carboxy terminus. If functional, this recognition site could lead to covalent linkage of Pip to the cell wall. Pip was detected in both plasma membranes and envelopes (plasma membrane plus peptidoglycan) isolated from the wild-type Pip strain LM2301. Pip was firmly attached to membrane and envelope preparations and was solubilized only by treatment with detergent. Three mutant Pip proteins were separately made in which the multiple-membrane-spanning region was deleted (Pip-Deltammsr), the sortase recognition site was converted to the consensus (Pip-H841G), or the sortase recognition site was deleted (Pip-Delta6). All three mutant Pip proteins co-purified with membranes and could not be solubilized except with detergent. When membranes containing Pip-Deltammsr were sonicated and re-isolated by sucrose density gradient centrifugation, Pip-Deltammsr remained associated with the membranes. Strains that expressed Pip-H841G or Pip-Delta6 formed plaques with near unit efficiency, whereas the strain that expressed Pip-Deltammsr did not form plaques of phage c2. Both membranes and cell-free culture supernatant from the strain expressing Pip-Deltammsr inactivated phage c2. These results suggest that Pip is an integral membrane protein that is not anchored to the cell wall and that the multiple-membrane-spanning region is required for productive phage infection but not phage inactivation.  相似文献   

8.
Cell wall sorting of lipoproteins in Staphylococcus aureus.   总被引:2,自引:0,他引:2       下载免费PDF全文
Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also be anchored to the cell wall of S. aureus. The topology of cell wall-anchored beta-lactamase is reminiscent of that described for Braun's murein lipoprotein in that the N terminus of the polypeptide chain is membrane anchored whereas the C-terminal end is tethered to the bacterial cell wall.  相似文献   

9.
Post-translational lipidation by prenylation of the CaaX-box C-terminal motif in eukaryotic proteins facilitates anchoring of hydrophilic proteins, such as Ras and Rab, to membranes. A large cadre of bacterial effectors injected into host cells is anchored to host membranes by unknown mechanisms. As already documented for Legionella and Salmonella, we propose a common paradigm of microbial exploitation of the host prenylation machinery for anchoring of injected effectors to host membranes. This is supported by numerous potential microbial CaaX-box-containing proteins identified using refined bioinformatic tools. We also propose utilization of the CaaX motif as a membrane-targeting tag for proteins expressed in eukaryotic cells to facilitate deciphering of biological function.  相似文献   

10.
A mutant single chain urokinase plasminogen activator (scu-PA) was constructed by the addition of an apical membrane targeting signal from decay accelerating factor to the scu-PA carboxyl terminus. Bovine aortic endothelial cells (EC) were transduced with the mutant scu-PA. Metabolic labeling, immunoprecipitation, and gel electrophoresis revealed that the mutant scu-PA was present in a single-chain form at the EC surface. Immunohistochemistry and enzyme-linked immunosorbent assay before and after treatment of EC with phosphotidylinositol-specific phospholipase C confirmed that scu-PA was attached to the EC surface by a glycosyl-phosphotidylinositol anchor. Approximately 10(6) anchored scu-PA molecules/cell were present; however, anchoring was not 100% efficient, with scu-PA released into the medium as well. Selective biotinylation of the apical and basolateral surfaces revealed that anchored scu-PA was polarized to the apical surface. Apically anchored scu-PA could be converted by plasmin to two-chain urokinase, with a normal specific activity (140,000 IU/mg) as measured with the chromogenic substrate S-2444. Expression of anchored scu-PA resulted in an increase in EC surface plasminogen activator activity, as compared with the activity of either untransduced EC or EC transduced with a wild type scu-PA. These experiments demonstrate: 1) apical membrane targeting can be accomplished in EC; 2) scu-PA can be anchored to the EC surface with preservation of enzymatic activity; 3) EC surface plasminogen activator activity is significantly increased by the presence of anchored scu-PA. Cell surface targeted plasminogen activators may eventually be useful in the prevention and treatment of intravascular thrombosis.  相似文献   

11.
Shen C  Zhang G  Meng Q 《PloS one》2012,7(4):e36110
Cytocompatibility is critically important in design of biomaterials for application in tissue engineering. However, the currently well-accepted "cytocompatible" biomaterials are those which promote cells to sustain good attachment/spreading. The cells on such materials usually lack the self-assembled cell morphology and high cell functions as in vivo. In our view, biomaterials that can promote the ability of cells to self-assemble and demonstrate cell-specific functions would be cytocompatible. This paper examined the interaction of polyethylene glycol (PEG) modified polysulfone (PSf) membranes with four epithelial cell types (primary liver cells, a liver tumor cell line, and two renal tubular cell lines). Our results show that PSf membranes modified with proper PEG promoted the aggregation of both liver and renal cells, but the liver cells more easily formed aggregates than the renal tubular cells. The culture on PEG-modified PSf membranes also enhanced cell-specific functions. In particular, the cells cultured on F127 membranes with the proper PEG content mimicked the in vivo ultrastructure of liver cells or renal tubules cells and displayed the highest cell functions. Gene expression data for adhesion proteins suggest that the PEG modification impaired cell-membrane interactions and increased cell-cell interactions, thus facilitating cell self-assembly. In conclusion, PEG-modified membrane could be a cytocompatible material which regulates the morphology and functions of epithelial cells in mimicking cell performance in vivo.  相似文献   

12.
Extracellular membrane-bound and secreted heat shock protein 90 (Hsp90) is known to be involved in cell motility and invasion. The mechanism of Hsp90 anchoring to the plasma membrane remains obscure. We showed that treatment of human glioblastoma A-172 and fibrosarcoma HT1080 cells with sodium chlorate, heparinase, and heparin causes a prominent loss of 2 Hsp90 cytosolic isoforms, Hsp90α and Hsp90β, from the cell surface and strongly inhibits the binding of exogenous Hsp90 to cells. We revealed that Hsp90α and Hsp90β are partly colocalized with heparan sulfate proteoglycans (HSPGs) on the cell surface and that this colocalization was sensitive to heparin. The results demonstrate that cell surface HSPGs are involved in the binding/anchoring of Hsp90α and Hsp90β to the plasma membrane.  相似文献   

13.
Protein kinase A (PKA) holoenzyme is anchored to specific subcellular regions by interactions between regulatory subunits (Pka-R) and A-kinase anchoring proteins (AKAPs). We examine the functional importance of PKA anchoring during Drosophila oogenesis by analyzing membrane integrity and actin structures in mutants with disruptions in Akap200, an AKAP. In wild-type ovaries, Pka-RII and Akap200 localized to membranes and to the outer rim of ring canals, actin-rich structures that connect germline cells. In Akap200 mutant ovaries, Pka-RII membrane localization decreased, leading to a destabilization of membrane structures and the formation of binucleate nurse cells. Defects in membrane integrity could be mimicked by expressing a constitutively active PKA catalytic subunit (Pka-C) throughout germline cells. Unexpectedly, nurse cells in Akap200 mutant ovaries also had enlarged, thin ring canals. In contrast, overexpressing Akap200 in the germline resulted in thicker, smaller ring canals. To investigate the role of Akap200 in regulating ring canal growth, we examined genetic interactions with other genes that are known to regulate ring canal morphology. Akap200 mutations suppressed the small ring canal phenotype produced by Src64B mutants, linking Akap200 with the non-receptor tyrosine kinase pathway. Together, these results provide the first evidence that PKA localization is required for morphogenesis of actin structures in an intact organism.  相似文献   

14.
PRiMA: the membrane anchor of acetylcholinesterase in the brain.   总被引:14,自引:0,他引:14  
As a tetramer, acetylcholinesterase (AChE) is anchored to the basal lamina of the neuromuscular junction and to the membrane of neuronal synapses. We have previously shown that collagen Q (ColQ) anchors AChE at the neuromuscular junction. We have now cloned the gene PRiMA (proline-rich membrane anchor) encoding the AChE anchor in mammalian brain. We show that PRiMA is able to organize AChE into tetramers and to anchor them at the surface of transfected cells. Furthermore, we demonstrate that AChE is actually anchored in neural cell membranes through its interaction with PRiMA. Finally, we propose that only PRiMA anchors AChE in mammalian brain and muscle cell membranes.  相似文献   

15.
A brush-type microbial-cell-capturing polymeric material was prepared by radiation-induced grafting of an epoxy-group-containing monomer, glycidyl-methacrylate (GMA), onto a polyethylene-based fiber. The epoxy ring (EO) of GMA was opened with different degrees of introduction of diethylamine (DEA). The residual epoxy group was hydrophilized by ethanolamine (EA). The prepared DEA membranes with coexisting EO or EA groups were tested for their ability to capture Staphylococcus aureus and Escherichia coli cells. The DEA membrane (2.7 mol/kg of product of DEA group density) with coexisting EO groups (DEA-EO membrane) exhibited good S. aureus-cell-capturing ability with a capturing rate constant of 1.82 x 10(-6) m/s, whereas the DEA membrane with coexisting EA groups (DEA-EA membrane) retarded capturing abilities for both S. aureus and E. coli cells. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 523-528, 1997.  相似文献   

16.
Poly(ethylene glycol) (PEG)-conjugated human serum albumin (HSA) incorporating the tetrakis(alpha,alpha,alpha,alpha-o-amidophenyl)porphinatoiron(II) derivative (FeP) [PEG(HSA-FeP)] is a unique plasma protein-based O2 carrier as a red blood cell substitute. The aqueous solution of PEG(HSA-FeP) [mw of PEG: 2-kDa (PEG2) or 5-kDa (PEG5)] was evaporated on a glass surface to produce a red-colored solid membrane. Scanning electron microscopy observations revealed that the PEG2(HSA-FeP) membrane consisted of two parts: (i) a surface layer made of a fibrous component (10 microm thickness), and (ii) a bottom layer of an amorphous phase (5 microm thickness). The condensed solution provided a thick membrane (70 microm), which also has the amorphous bottom layer. On the other hand, the PEG5(HSA-FeP) produced homogeneous membrane made of the fibrous component. The FeP active sites in the solid membrane formed very stable O2-adduct complexes at 37 degrees C with a half-lifetime of 40 h. The O2-binding affinity of the PEG2(HSA-FeP) membrane (P1/2 = 40 Torr, 25 degrees C) was 4-fold lower than that in aqueous solution, which is kinetically due to the low association rate constant. The membrane was soluble again in water and organic solvents (ethanol and chloroform) without deformation of the secondary structure of the protein. The addition of hyaluronic acid gave a free-standing flexible thin film, and it can also bind and release O2 as well. These O2-carrying albumin membranes with a micrometer-thickness would be of significant medical importance for a variety of clinical treatments.  相似文献   

17.
Two maleimide-containing diacylglycerol derivatives were synthesized to permit the anchoring of short peptides and longer polypeptides to phospholipid bilayers and membranes. The maleimide was introduced at the site normally occupied by a phospholipid headgroup. The first lipid, the dipalmitoyl ester of 1-maleimido-2,3-propanediol, was developed as a membrane anchor for extracellular domains of transmembrane proteins. The second anchoring lipid, in which the 3-position contained a 6-aminohexanoate, was designed for convenient modification with amine-reactive reporter groups. Specifically, the NBD fluorophore, 7-nitrobenzo-2-oxa-1, 3-diazole-aminohexanoic-N-hydroxysuccinimide ester, was attached to give an fluorescent anchoring reagent. Next, these reagents were applied to the anchoring of a C-terminally cysteamine-modified 8 kDa polypeptide that comprises the extracellular N-terminal domain of the human thrombin receptor, a transmembrane protease-activated receptor (PAR-1). Gel filtration and fluorescence analysis showed that the fluorescent lipopolypeptide spontaneously inserted into preformed phospholipid vesicles, but it did not insert into whole cell membranes. In contrast, the dipalmitoyl derivative could only be reconstituted into artificial membranes by mixing the lipopolypeptide and phospholipid before vesicle formation. These results suggest that biophysical interactions governing the lipopolypeptide insertion into artificial and cellular membranes may differ. The thiol-reactive lipidating reagents should be valuable materials for studying the structure and function of peptides and polypeptides at phospholipid bilayer surfaces.  相似文献   

18.
The high intraluminal concentrations of HCO(3)(-) in the human pancreatic ducts have suggested the existence of a membrane protein supplying the Cl(-)/HCO(3)(-) exchanger. Membrane-bound carbonic anhydrase IV (CA IV) is one of the potential candidates for this protein. The difficulties in isolating human pancreatic ducts have led the authors to study the molecular mechanisms of HCO(3)(-) secretion in cancerous cell lines. In this work, we have characterized the CA IV expressed in Capan-1 cells. A 35-kDa CA IV was detected in cell homogenates and purified plasma membranes. Treatment of purified plasma membranes with phosphatidylinositol-phospholipase-C indicated that this CA IV was not anchored by a glycosylphosphatidylinositol (GPI). In contrast, its detection on purified plasma membranes by an antibody specifically directed against the carboxyl terminus of human immature GPI-anchored CA IV indicated that it was anchored by a C-terminal hydrophobic segment. Immunoelectron microscopy and double-labeling immunofluorescence revealed that this CA IV was present on apical plasma membranes, and in the rough endoplasmic reticulum, the endoplasmic reticulum-Golgi intermediate compartment, the Golgi complex, and secretory granules, suggesting its transport via the classical biosynthesis/secretory pathway. The expression in Capan-1 cells of a 35-kDa CA IV anchored in the apical plasma membrane through a hydrophobic segment, as is the case in the healthy human pancreas, should make the study of its role in pancreatic HCO(3)(-) secretion easier.  相似文献   

19.
Morphogenesis of epithelial tissues relies on the precise developmental control of cell polarity and architecture. In the early Drosophila embryo, the primary epithelium forms during cellularisation, following a tightly controlled genetic programme where specific sets of genes are upregulated. Some of them, for example, control membrane invagination between the nuclei anchored at the apical surface of the syncytium. We used microarrays to describe the global programme of gene expression underlying cellularisation and identified distinct classes of upregulated genes during this process. Fifty-seven genes were then tested functionally by RNAi. We found six genes affecting various aspects of cellular architecture: membrane growth, organelle transport or organisation and junction assembly. We focus here on charleston (char), a new regulator of nuclear morphogenesis and of apical nuclear anchoring. In char-depleted embryos, the nuclei fail to maintain their elongated shape and, instead, become rounded. In addition, together with a disruption of the centrosome-nuclear envelope interaction, the nuclei lose their regular apical anchoring. These nuclear defects perturb the regular columnar organisation of epithelial cells in the embryo. Although microtubules are required for both nuclear morphogenesis and anchoring, char does not control microtubule organisation and association to the nuclear envelope. We show that Char is lipid anchored at the nuclear envelope by a farnesylation group, and localises at the inner nuclear membrane together with Lamin. Our data suggest that Char forms a scaffold that regulates nuclear architecture to constrain nuclei in tight columnar epithelial cells. The upregulation of Char during cellularisation and gastrulation reveals the existence of an as yet unknown developmental control of nuclear morphology and anchoring in embryonic epithelia.  相似文献   

20.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.   总被引:24,自引:1,他引:23       下载免费PDF全文
S Mayor  S Sabharanjak    F R Maxfield 《The EMBO journal》1998,17(16):4626-4638
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号