首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

3.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

4.
Dynamics of rhythmic oscillations in the activity of arylalkylamine N-acetyltransferase (AA-NAT, the penultimate and key regulatory enzyme in melatonin biosynthesis) were examined in the retina and pineal gland of turkeys maintained for 7 days in the environment without daily light-dark (LD) changes, namely constant darkness (DD) or continuous light (LL). The two tissues differentially responded to constant environment. In the retina, a circadian AA-NAT activity rhythm disappeared after 5 days of DD, while in the pineal gland it persisted for the whole experiment. No circadian rhythm was observed in the retinas of turkeys exposed to LL, although rhythmic oscillations in both AA-NAT and melatonin content were found in the pineal glands. Both tissues required one or two cycles of the re-installed LD for the full recovery of the high-amplitude AA-NAT rhythm suppressed under constant conditions. It is suggested that the retina of turkey is less able to maintain rhythmicity in constant environment and is more sensitive to changes in the environmental lighting conditions than the pineal gland. Our results indicate that, in contrast to mammals, pineal glands of light-exposed galliformes maintain the limited capacity to rhythmically produce melatonin.  相似文献   

5.
Abstract: The circadian rhythms in melatonin production in the chicken pineal gland and retina reflect changes in the activity of serotonin N -acetyltransferase (arylalkylamine N -acetyltransferase; AA-NAT; EC 2.3.1.87). Here we determined that the chicken AA-NAT mRNA is detectable in follicular pineal cells and retinal photoreceptors and that it exhibits a circadian rhythm, with peak levels at night. AA-NAT mRNA was not detected in other tissues. The AA-NAT mRNA rhythm in the pineal gland and retina persists in constant darkness (DD) and constant lighting (LL). The amplitude of the pineal mRNA rhythm is not decreased in LL. Light appears to influence the phase of the clock driving the rhythm in pineal AA-NAT mRNA in two ways: The peak is delayed by ∼6 h in LL, and it is advanced by >4 h by a 6-h light pulse late in subjective night in DD. Nocturnal AA-NAT mRNA levels do not change during a 20-min exposure to light, whereas this treatment dramatically decreases AA-NAT activity. These observations suggest that the rhythmic changes in chicken pineal AA-NAT activity reflect, at least in part, clock-generated changes in mRNA levels. In contrast, changes in mRNA content are not involved in the rapid light-induced decrease in AA-NAT activity.  相似文献   

6.
This study reports for the first time the effects of retinoid-related orphan receptors [RORbeta; receptor gene deletion RORbeta(C3H)(-/-)] in C3H/HeN mice on behavioral and circadian phenotypes. Pineal melatonin levels showed a robust diurnal rhythm with high levels at night in wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice. The RORbeta(C3H)(-/-) mice displayed motor ("duck gait," hind paw clasping reflex) and olfactory deficits, and reduced anxiety and learned helplessness-related behaviors. Circadian rhythms of wheel-running activity in all genotypes showed entrainment to the light-dark (LD) cycle, and free running in constant dark, with RORbeta(C3H)(-/-) mice showing a significant increase in circadian period (tau). Melatonin administration (90 microg/mouse sc for 3 days) at circadian time (CT) 10 induced phase advances, while exposure to a light pulse (300 lux) at CT 14 induced phase delays of circadian activity rhythms of the same magnitude in all genotypes. In RORbeta(C3H)(-/-) mice a light pulse at CT 22 elicited a larger phase advance in activity rhythms and a slower rate of reentrainment after a 6-h advance in the LD cycle compared with (+/+) mice. Yet, the rate of reentrainment was significantly advanced by melatonin administration at the new dark onset in both (+/+) and (-/-) mice. We conclude that the RORbeta nuclear receptor is not involved in either the rhythmic production of pineal melatonin or in mediating phase shifts of circadian rhythms by melatonin, but it may regulate clock responses to photic stimuli at certain time domains.  相似文献   

7.
Circadian rhythms in body temperature, locomotor activity, and the circadian changes of plasma and pineal melatonin content were investigated in B6D2F(1) mice synchronized by 12 h of light and 12 h of darkness. During 8 wk continuous recording, activity and temperature displayed a marked stable and reproducible circadian rhythm, with both peaks occurring near the middle of darkness. Both 24- and 12-h rhythmic components were also significantly detected. Mean plasma melatonin concentration rose steadily during the light span and reached a maximum (30.6 +/- 10.0 pg/ml) at 11 h after light onset (HALO), then gradually decreased after the onset of darkness to a nadir (4.7 +/- 0.4 pg/ml) at 20 HALO. Mean pineal content followed a pattern parallel to that of plasma concentration (peak at 11 HALO: 17.7 +/- 1.0 pg/gland; trough at 17 HALO: 4.7 +/- 1.0 pg/gland). In addition, a second sharp peak was observed at 21 HALO (20.2 +/- 3.5 pg/gland). Plasma and pineal contents displayed large and statistically significant circadian changes, with a composite rhythm of period (24 + 12 h). This mouse model has predominant production and secretion of melatonin during the day. This possibly contributes to a similar coupling between chronopharmacology mechanisms and the rest-activity cycle in these mice and in human subjects.  相似文献   

8.
9.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

10.
The newly discovered multi-oscillatory nature of the mammalian circadian clock system and the cloning of the genes involved in the molecular mechanism that generates circadian rhythmicity have opened new approaches for understanding how mammals are temporally organized and how the mammalian circadian system reacts to the lack of normal synchronization cues. In the present study we investigated the effects of long-term exposure to constant red dim light on the pattern of the expression of Period 1 in the suprachiasmatic nuclei of the hypothalamus and of Arylalkylamine N-acetyltransferase(Aa-nat) in the retina and pineal gland. Our data demonstrate that Period 1 mRNA expression in the suprachiasmatic nuclei of the hypothalamus was not affected by exposure to constant red dim light for 60 days, whereas Aa-nat mRNA expression in the retina and in the pineal gland was significantly affected, since in some animals (20-30%) Aa-nat mRNA levels were found to be higher during the subjective day. A circadian rhythm of serum melatonin and locomotor activity was present in all the animals tested. In 4 animals serum melatonin levels were high during the subjective day. Our data suggest that long-term exposure to constant red dim light may induce desynchronization between the circadian rhythm of locomotor activity and serum melatonin levels.  相似文献   

11.
12.
In green iguanas, the pineal controls the circadian rhythm of body temperature but not the rhythm of locomotor activity. As part of a program to investigate the characteristics of this multioscillator circadian system, the authors studied the circadian rhythms of the electroretinographic response (ERG) and asked whether the pineal gland is necessary for the expression of this rhythm. ERGs from a total of 24 anesthetized juvenile iguanas were recorded under four different conditions: (a) complete darkness (DD), (b) dim light-dark cycles (dLD), (c) constant dim light (dLL), and (d) pinealectomized in DD. Results demonstrate that the b-wave component of the ERG shows a very clear circadian rhythm in DD and that this rhythm persists in dLL and entrains to dLD cycles. The ERG response is maximally sensitive during the subjective day. Pinealectomy does not abolish the circadian rhythm in ERG, demonstrating that the oscillator responsible for the ERG rhythm is located elsewhere.  相似文献   

13.
Summary The pineal and the eyes are known to be important components in the circadian system of some species of lizards; their effects may be mediated by the hormone melatonin. We examined the role played by these structures in the desert iguana (Dipsosaurus dorsalis). Surgical removal of the pineal had no effect on circadian locomotor rhythms, even though this procedure abolished the circadian rhythm of melatonin in the blood. Furthermore, when the isolated pineal of Dipsosaurus was studied in organ culture, it showed no circadian rhythm of melatonin secretion, as do pineals of some other lizard species, although it did produce large quantities of this hormone. Bilateral ocular enucleation had only small effects on the freerunning period of locomotor rhythms, without affecting melatonin levels in the blood. Behavioral circadian rhythms persisted in desert iguanas subjected to both enucleation and pinealectomy. These data suggest that neither the pineal nor the eyes are central components of the circadian pacemaking system in Dipsosaurus, nor is melatonin critically involved in maintaining its organization.Abbreviations CT circadian time - ZT zeitgeber time - LL constant light - LD light-dark cycle - DD constant darkness - freerunning circadian period  相似文献   

14.
In order to contribute to a comparative view on lacertids, the effect of pinealectomy on the freerunning activity displayed under constant darkness and temperature (27.5°C ± 0.5) has been studied in the lizard Gallotia galloti eisentrauti . Animals showed an entrained motor activity rhythm under an initial light-dark (12:12 hours) routine and freerunning circadian periods ranging between 24.1 and 25.5 h during constant darkness (periodograms obtained by Sokolove & Bushell's method). After pinealectomy, most animals showed no significant circadian rhythm, their locomotor activity becoming diffuse throughout the whole 24 h period. Thus, the pineal gland seems to play an important role as a main pacemaker regulating the endogenous activity rhythm under constant conditions. This result contrasts with that found in Podarcis sicula where after pinealectomy only changes in length of the freerunning period were found.  相似文献   

15.
16.
The circadian locomotor activity rhythm of the Japanese newt has been thought to be driven by a putative brain oscillator(s) subordinate to the pineal clock. The existence of mutual coupling between the pineal clock and the brain oscillator(s) in vivo was examined. We covered the newt's skull with aluminum foil and simultaneously reversed the light-dark cycle, thereby allowing the pineal organ to be exposed to constant darkness while the rest of the animal was exposed to the reversed light-dark cycle. In control animals, whose heads were covered with transparent plastic, the rhythm of synaptic ribbon number in the pineal photoreceptor cells was entrained to the reversed light-dark cycle. Rhythms from newts whose heads were shielded, however, were similar to those observed in the unoperated newts kept under constant darkness. The locomotor activity rhythms of both head-covered animals and control animals were entrained to the reversed light-dark cycle. These data suggest that extrapineal photoreception can entrain the putative brain oscillator(s), but not the pineal clock. Thus, at least in an aspect of photic entrainment, there seems to be little or no mutual coupling between the pineal clock and the putative brain oscillator(s) in the circadian system of the Japanese newt.Abbreviations LD light-dark - DD constant darkness - SCN suprachiasmatic nucleus - SR synaptic ribbon  相似文献   

17.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

18.
19.
Adult lizards (Sceloporus torquatus) were used to test whether seasonal differences in the effects of pinealectomy upon the locomotor activity rhythm exist. Animals were field collected and exposed to artificial light - dark cycles and constant temperature in winter and summer. Free running circadian rhythms under constant temperature and dim red light were monitored using infrared light-crossings. The effects of pinealectomy were assessed by analysing the circadian parameters of free running period and activity - rest ratio in constant darkness or light - dark cycles. Results obtained indicate that pinealectomy changes the free running period of locomotor activity rhythm, irrespective of season, while seasonal differences in activity-rest ratio were detected. Our findings support the hypothesis that seasonal regulation of circadian rhythms in lizards is accomplished, in part, via the output of the pineal gland.  相似文献   

20.
Taurine is believed to be a modulator of membrane excitability in muscle and a neuroinhibitory transmitter in the central nervous system. The retina and pineal contain relatively large quantities of taurine. Taurine levels in the retina are reported to be responsive to variations in lighting conditions. We report here a carcadian rhythm for taurine in the mature male rat pineal gland. The maximum taurine concentration occurs at the midpoint of the light period, 24 ± 1.9 nmoles/gland, and the minimum at the beginning of the dark period, 13.9 ± 1.6 nmoles/gland. Sympathectomy by bilateral superior cervical ganglionectomy lowered pineal taurine levels. Constant light and blinding had no effect. Taurine was demonstrated to be taken up by the pineal gland invitro in organ culture. The uptake was saturable, Km = 2.0 mM, and sodium dependent. The close structural analogs hypotaurine and β-alanine inhibited taurine uptake but α-alanine did not. We have demonstrated a circadian rhythm for taurine content in the rat pineal gland and the presence of a sodium-dependent transport system for taurine in the pineal invitro in organ culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号