首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence indicates that translation elongation factor Tu (EF-Tu) has a role in the cell in addition to its well established role in translation. The translation factor binds to a specific region called the Gol region close to the N terminus of the T4 bacteriophage major head protein as the head protein emerges from the ribosome. This binding was discovered because EF-Tu bound to Gol peptide is the specific substrate of the Lit protease that cleaves the EF-Tu between amino acid residues Gly59 and lle60, blocking phage development. These experiments raised the question of why the Gol region of the incipient head protein binds to EF-Tu, as binding to incipient proteins is not expected from the canonical role of EF-Tu. Here, we use gol-lacZ translational fusions to show that cleavage of EF-Tu in the complex with Gol peptide can block translation of a lacZ reporter gene fused translationally downstream of the Gol peptide that activated the cleavage. We propose a model to explain how binding of EF-Tu to the emerging Gol peptide could cause translation to pause temporarily and allow time for the leader polypeptide to bind to the GroEL chaperonin before translation continues, allowing cotranslation of the head protein with its insertion into the GroEL chaperonin chamber, and preventing premature synthesis and precipitation of the head protein. Cleavage of EF-Tu in the complex would block translation of the head protein and therefore development of the infecting phage. Experiments are presented that confirm two predictions of this model. Considering the evolutionary conservation of the components of this system, this novel regulatory mechanism could be used in other situations, both in bacteria and eukaryotes, where proteins are cotranslated with their insertion into cellular structures.  相似文献   

2.
Activation of latent proteinases ensures that the timing of proteolysis is regulated precisely, a process that generally involves proteolytic excision of a pro-region or a tightly bound inhibitor. Here we define the activation mechanism for Lit, a dormant suicide proteinase in Escherichia coli K-12. Previous work has shown that Gol, a short sequence within the major capsid protein gp23, activates Lit during the latter stages of T4 phage infection. This results in cell death and exclusion of the phage from the culture. The Lit site specifically cleaves the host translation factor EF-Tu (elongation factor Tu) after it has formed a weak complex with Gol, which can be supplied as a 29-residue peptide. Gol is absolutely required for Lit activation. but its role in proteolysis is unknown. Using a purified three-component system and kinetic analysis, we demonstrate that under physiological conditions Lit hydrolyzes its substrate very slowly (k(cat) of approximately 1 s(-1)). Given the abundance of EF-Tu in the cell, this finding is consistent with a cell-killing mechanism in which a few cleaved EF-Tu proteins are able block translating ribosomes from functioning. We also demonstrate that less than half of the 29 Gol residues are needed for Lit activation and that the role of the peptide is not to provide catalytic groups but to influence catalysis indirectly through stabilization of the ternary Lit.Gol.EF-Tu complex. Hence, phage-elicited suicide of E. coli K-12 by Lit is a variant form of "cofactor-induced activation," a mechanism of protease activation that has only been documented previously in pathogen subversion of mammalian hemostasis cascades.  相似文献   

3.
Bacteriophage exclusion is a suicide response to viral infection. In strains of Escherichia coli K-12 infected with T4 phage this process is mediated by the host-encoded Lit peptidase. Lit is activated by a unique sequence in the major head protein of the T4 phage (the Gol sequence) which then cleaves site-specifically the host translation factor EF-Tu, ultimately leading to cell death. Lit has very low sequence identity with other peptidases, with only a putative metallopeptidase motif, H(160)EXXH, giving an indication of its catalytic activity. The aim of the present study was to ascertain if Lit is a metallopeptidase, identify residues essential for Lit activity, and probe the involvement of the Gol sequence in the activation of enzymatic activity. Lit activity was inhibited by the zinc chelator 1,10-phenanthroline, consistent with the suggestion that it is a metallopeptidase. Preliminary covalent modification experiments found that Lit was susceptible to inactivation by diethyl pyrocarbonate, with about three histidines reversibly modified, one of which was found to be essential for proteolytic activity. Subsequently, 13 mutants of the Lit enzyme were constructed that included all 10 histidines as well as other residues within the metallopeptidase motif. This demonstrated that the residues within the HEXXH motif are required for Lit activity and further defined the essential catalytic core as H(160)EXXHX(67)H, with additional residues such as His169 being important but not essential for activity. Kinetic analysis of Lit activation by a synthetic Gol peptide highlighted that elevated concentrations of the peptide (>10-fold above activation K(M)) are inhibitory to Lit, with this effect also seen in partially active Lit mutants. The susceptibility of Lit to inhibition by its own activating peptide suggests that the Gol sequence may be able to bind nonproductively to the enzyme at high concentration. We discuss these data in the context of the currently understood models for Gol-mediated activation of the Lit peptidase and its mechanism of action.  相似文献   

4.
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.  相似文献   

5.
Translational regulation by modifications of the elongation factor Tu   总被引:1,自引:0,他引:1  
EF-Tu fromE. coli, one of the superfamily of GTPase switch proteins, plays a central role in the fast and accurate delivery of aminoacyl-tRNAs to the translating ribosome. An overview is given about the regulatory effects of methylation, phosphorlation and phage-induced cleavage of EF-Tu on its function. During exponential growth, EF-Tu becomes monomethylated at Lys56 which is converted to Me2Lys upon entering the stationary phase. Lys56 is in the GTPase switch-1 regions (residues 49–62), a strongly conserved site involved in interactions with the nucleotide and the 5′ end of tRNA. Methylation was found to attenuate GTP hydrolysis and may thus enhance translational accuracy.In vivo 5–10% of EF-Tu is phosphorylated at Thr382 by a ribosome-associated kinase. In EF-Tu-GTP, Thr382 in domain 3 has a strategic position in the interface with domain 1; it is hydrogen-bonded to Glu117 that takes part in the switch-2 mechanism, and is close to the T-stem binding site of the tRNA, in a region known for many kirromycin-resistance mutations. Phosphorylation is enhanced by EF-Ts, but inhibited by kirromycin. In reverse, phosphorylated EF-Tu has an increased affinity for EF-Ts, does not bind kirromycin and can no longer bind aminoacyl tRNA. Thein vivo role of this reversibles modification is still a matter of speculation. T4 infection ofE. coli may trigger a phage-exclusion mechanism by activation of Lit, a host-encoded proteinase. As a result, EF-Tu is cleaved site-specifically between Gly59-Ile60 in the switch-1 region. Translation was found to drop beyond a minimum level. Interestingly, the identical sequence in the related EF-G appeared to remain fully intact. Although the Lit cleavage-mechanism may eventually lead to programmed cell death, the very efficient prevention of phage multiplication may be caused by a novel mechanisms ofin cis inhibition of late T4 mRNA translation. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

6.
Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed.  相似文献   

7.
We have found the gene for a translation elongation factor Tu (EF-Tu) homologue in the genome of the nematode Caenorhabditis elegans. Because the corresponding protein was detected immunologically in a nematode mitochondrial (mt) extract, it could be regarded as a nematode mt EF-Tu. The protein possesses an extension of about 57 amino acids (we call this domain 3') at the C terminus, which is not found in any other known EF-Tu. Because most nematode mt tRNAs lack a T stem, domain 3' may be related to this feature. The nematode EF-Tu bound to nematode T stem-lacking tRNA, but bacterial EF-Tu was unable to do so. A series of domain exchange experiments strongly suggested that domains 3 and 3' are essential for binding to T stem-lacking tRNAs. This finding may constitute a novel example of the co-evolution of a structurally simplified RNA and the cognate RNA-binding protein, the latter having apparently acquired an additional domain to compensate for the lack of a binding site(s) on the RNA.  相似文献   

8.
9.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

10.
The complete nucleotide sequence of the group II RNA coliphage GA   总被引:14,自引:0,他引:14  
The complete nucleotide sequence of the RNA coliphage GA, a group II phage, is presented. The entire genome comprises 3466 bases. Three large open reading frames were identified, which correspond to the maturation protein gene (390 amino acids), the coat protein gene (129 amino acids) and the replicase beta-subunit protein gene (531 amino acids). In addition, untranslated regions occur at the 5' (135 bases) and 3' (122 bases) ends of the molecule. Two intercistronic untranslated regions occur between the cistrons for the maturation and coat proteins, and between the coat and beta-subunit proteins. We have compared the nucleotide sequence of GA RNA with the published sequence of MS2 RNA, and show that they are related. The comparative structures of two important regulatory regions are presented; the coat protein binding site which is involved in translational repression of the replicase beta-subunit protein gene, and a hairpin in a region proximal to the lysis protein gene.  相似文献   

11.
Peptide libraries displayed by filamentous bacteriophage have proven a powerful tool for the discovery of novel peptide agonists, antagonists and epitope mimics. Most phage-displayed peptides are fused to the N terminus of either the minor coat protein, pIII, or the major coat protein, pVIII. We report here that peptides containing cysteine residues, displayed as N-terminal fusions to pVIII, can form disulfide-bridged homodimers on the phage coat. Phage clones were randomly selected from libraries containing one or two fixed Cys residues, and surveyed for the presence of peptide-pVIII homodimers by SDS-PAGE analysis that involved pretreatment of the phage with reducing or thiol-modifying agents. For all phage whose recombinant peptide contained a single Cys residue, a significant fraction of the peptide-pVIII molecules were displayed as dimers on the phage coat. The dimeric form was in greater abundance than the monomer in almost all cases in which both forms could be reliably observed. Occasionally, peptides containing two Cys residues also formed dimers. These results indicate that, for a given pVIII-displayed peptide bearing a single Cys residue, a significant fraction of the peptide (>40 %) will dimerize regardless of its sequence; however, sequence constraints probably determine whether all of the peptide will dimerize. Similarly, only occasionally do peptides bearing two Cys residues form intermolecular disulfide bridges instead of intramolecular ones; this indicates that sequence constraints may also determine dimerization versus cyclization. Sucrose-gradient analysis of membranes from cells expressing pVIII fused to a peptide containing a single Cys residue showed that dimeric pVIII is present in the cell prior to its assembly onto phage. A model of the peptide-pVIII homodimer is discussed in light of existing models of the structure and assembly of the phage coat. The unique secondary structures created by the covalent association of peptides on the phage surface suggest a role for homo- and heterodimeric peptide libraries as novel sources of bioactive peptides.  相似文献   

12.
In vitro formation of both bacteriophage T4 internal peptides (II and VII) from preexisting precursor protein was shown to require the product of T4 gene 21. The proteolytic factor was detectable in extracts of cells infected with certain phage mutants blocked in early steps of head assembly but could not be demonstrated in extracts of T4 wild-type infected cells. This finding suggests that the proteolytic factor is inactivated during normal phage assembly. The product of T4 gene 22 appears to be the precursor of peptide VII but not of peptide II.  相似文献   

13.
Assembly and export of filamentous phage requires four non-capsid proteins: the outer membrane protein, pIV; the inner membrane proteins, pI and pXI; and a cytoplasmic host factor, thioredoxin. Chemical cross-linking of intact cells demonstrates a trans-membrane complex containing pI and pIV. Formation of the complex protects pI from proteolytic cleavage by an endogenous protease. This protection also requires pXI, which is identical to the C-terminal portion of pI. This indicates that pXI, which is required for phage assembly in its own right, is also part of the complex. This complex forms in the absence of any other phage proteins or the DNA substrate; hence, it represents the first preinitiation step of phage morphogenesis. On the basis of protease protection data, we propose that the preinitiation complex is converted to an initiation complex by binding phage DNA, thioredoxin and the initiating minor coat protein(s).  相似文献   

14.
Moore SD  Prevelige PE 《Journal of virology》2002,76(20):10245-10255
Bacteriophage with linear, double-stranded DNA genomes package DNA into preassembled protein shells called procapsids. Located at one vertex in the procapsid is a portal complex composed of a ring of 12 subunits of portal protein. The portal complex serves as a docking site for the DNA packaging enzymes, a conduit for the passage of DNA, and a binding site for the phage tail. An excess of the P22 portal protein alters the assembly pathway of the procapsid, giving rise to defective procapsid-like particles and aberrant heads. In the present study, we report the isolation of escape mutant phage that are able to replicate more efficiently than wild-type phage in the presence of excess portal protein. The escape mutations all mapped to the same phage genome segment spanning the portal, scaffold, coat, and open reading frame 69 genes. The mutations present in five of the escape mutants were determined by DNA sequencing. Interestingly, each mutant contained the same mutation in the scaffold gene, which changes the glycine at position 287 to glutamate. This mutation alone conferred an escape phenotype, and the heads assembled by phage harboring only this mutation had reduced levels of portal protein and exhibited increased head assembly fidelity in the presence of excess portal protein. Because this mutation resides in a region of scaffold protein necessary for coat protein binding, these findings suggest that the P22 scaffold protein may define the portal vertices in an indirect manner, possibly by regulating the fidelity of coat protein polymerization.  相似文献   

15.
YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.  相似文献   

16.
The sequence of the tufA gene from the extreme thermophilic eubacterium Thermus aquaticus EP 00276 was determined. The GC content in third positions of codons is 89.5%, with an unusual predominance of guanosine (60.7%). The derived protein sequence differs from tufA- and tufB-encoded sequences for elongation factor Tu (EF-Tu) of Thermus thermophilus HB8, another member of the genus Thermus, in 10 of the 405 amino acid residues. Three exchanges are located in the additional loop of ten amino acids (182-191). The loop, probably involved in nucleotide binding, is absent in EF-Tu of the mesophile Escherichia coli. Since EF-Tu from E. coli is quite unstable, the protein is well-suited for analyzing molecular changes that lead to thermostabilization. Comparison of the EF-Tu domain I from E. coli and Thermus strains revealed clustered amino acid exchanges in the C-terminal part of the first helix and in adjacent residues of the second loop inferred to interact with the ribosome. Most other exchanges in the guanine nucleotide binding domain are located in loops or nearest vicinity of loops suggesting their importance for thermostability. The T. aquaticus EF-Tu was overproduced in E. coli using the tac expression system. Identity of the recombinant T. aquaticus EF-Tu was verified by Western blot analysis, N-terminal sequencing and GDP binding assays.  相似文献   

17.
Comparative molecular modeling has been used to generate several possible structures for the G-domain of chloroplast elongation factor Tu (EF-Tu(chl)) based on the crystallographic data of the homologous E. coli protein. EF-Tu(chl) contains a 10 amino acid insertion not present in the E. coli protein and this region has been modeled based on its predicted secondary structure. The insertion appears to lie on the surface of the protein. Its orientation could not be determined unequivocally but several likely structures for the nucleotide binding domain of EF-Tu(chl) have been developed. The effects of the presence of water in the Mg2+ coordination sphere and of the protonation state of the GDP ligand on the conformation of the guanine nucleotide binding site have been examined. Relative binding constants of several guanine nucleotide analogs for EF-Tu(chl) have been obtained. The interactions between EF-Tu(chl) and GDP predicted to be important by the models that have been developed are discussed in relation to the nucleotide binding properties of this factor and to the interactions proposed to be important in the binding of guanine nucleotides to related proteins.  相似文献   

18.
The human cytomegalovirus gene product US6 inhibits ATP binding by TAP   总被引:7,自引:0,他引:7  
Human cytomegalovirus (HCMV) encodes several genes that disrupt the major histocompatibility complex (MHC) class I antigen presentation pathway. We recently described the HCMV-encoded US6 gene product, a 23 kDa endoplasmic reticulum (ER)-resident type I integral membrane protein that binds to the transporter associated with antigen processing (TAP), inhibits peptide translocation and prevents MHC class I assembly. The functional consequence of this inhibition is to prevent the cell surface expression of class I bound viral peptides and their recognition by HCMV-specific cytotoxic T cells. Here we describe a novel mechanism of action for US6. We demonstrate that US6 inhibits the binding of ATP by TAP1. This is a conformational effect, as the ER lumenal domain of US6 is sufficient to inhibit ATP binding by the cytosolic nucleotide binding domain of TAP1. US6 also stabilizes TAP at 37 degrees C and prevents conformational rearrangements induced by peptide binding. Our findings suggest that the association of US6 with TAP stabilizes a conformation in TAP1 that prevents ATP binding and subsequent peptide translocation.  相似文献   

19.
20.
As part of an effort to develop detectors for selected species of bacterial spores, we screened phage display peptide libraries for 7- and 12-mer peptides that bind tightly to spores of Bacillus subtilis. All of the peptides isolated contained the sequence Asn-His-Phe-Leu at the amino terminus and exhibited clear preferences for other amino acids, especially Pro, at positions 5 to 7. We demonstrated that the sequence Asn-His-Phe-Leu-Pro (but not Asn-His-Phe-Leu) was sufficient for tight spore binding. We observed equal 7-mer peptide binding to spores of B. subtilis and its most closely related species, Bacillus amyloliquefaciens, and slightly weaker binding to spores of the closely related species Bacillus globigii. These three species comprise one branch on the Bacillus phylogenetic tree. We did not detect peptide binding to spores of several Bacillus species located on adjacent and nearby branches of the phylogenetic tree nor to vegetative cells of B. subtilis. The sequence Asn-His-Phe-Leu-Pro was used to identify B. subtilis proteins that may employ this peptide for docking to the outer surface of the forespore during spore coat assembly and/or maturation. One such protein, SpsC, appears to be involved in the synthesis of polysaccharide on the spore coat. SpsC contains the Asn-His-Phe-Leu-Pro sequence at positions 6 to 10, and the first five residues of SpsC apparently must be removed to allow spore binding. Finally, we discuss the use of peptide ligands for bacterial detection and the use of short peptide sequences for targeting proteins during spore formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号