首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The snPI RNA species are a recently described set of molecules whose sizes range from 5S to 10S. They can be labeled in vitro in isolated nuclei and are apparently formed by an RNA polymerase I type of activity. However, in contrast to ribosomal precursor RNA, the usual polymerase I product, they are not found in the nucleolus but rather are located in the nucleoplasm. The snPI RNAs have been found in all mammalian cell types studied. The spectrum seen in gel electrophoresis is unique to each animal species studied but is essentially the same in different cell types within a species. The differences in snPI patterns are quite large between even closely related species and are clearly distinguishable in gorilla and human cells.  相似文献   

2.
3.
Five of the stable low molecular weight RNA species in the HeLa cell nucleus have been localized in RNP complexes in the cell nucleus. The two abundant species C and D and the three minor species F, G′ and H are found in RNP particles following two different methods of preparation. Sonication of nuclei releases the five small RNAs and also the hnRNA in RNPs that sediment in a range from 10 to 150 S. Alternatively, incubation of intact nuclei at elevated temperature and pH releases four of the small RNAs and degraded hnRNA in more slowly sedimenting structures.When nuclear RNPs obtained by sonication are digested with RNAase in the presence of EDTA, the hnRNA is degraded and the hnRNPs sediment at 30 S. The structures containing the small RNA species D are similarly shifted to 30 S particles by RNAase and EDTA but not by either agent alone. In contrast, the sedimentation of complexes containing species G′ and H are not altered by exposure to RNAase/EDTA and small RNA species C and F are unstable under these conditions.In isopycnic metrizamide/2H2O gradients species D and hnRNA accumulate at a density characteristic of RNP particles. They have a similar but not identical distribution.Species D is released from large RNPs by salt concentrations of 0.1 m-NaCl or greater, while the hnRNA remains in large RNP particles. In contrast, the structures containing species G′ and H are stable in 0.3 m-NaCl. All five of the small nuclear RNA species and the hnRNAs are released from rapidly sedimenting complexes by the ionic detergent sodium deoxycholate.It is suggested that the low molecular weight RNA species play a structural role in RNP particles in the cell nucleus and that a subpopulation of species D may be associated with the particles that package the hnRNA.  相似文献   

4.
The low molecular weight RNA components of maize have been analyzed after labeling callus and leaf tissue with [3H]uridine in vitro. Electrophoresis of the isolated RNA on acrylamide slab gels reveals, apart from 5S and transfer RNA, three major and about five minor RNA species with chain lengths between 140 and 280 nucleotides. These RNA molecules are labeled as rapidly as 5S, transfer RNA, and do not represent degradation products of large ribosomal RNA molecules. Furthermore, like 5S and transfer RNA, these small RNA species are stable and show no detectable turnover within forty-eight hours. Fractionation of the tissue into crude subcellular fractions indicates a preferential association of some of the small stable RNA species with the nucleus, while others appear to be located in the cytoplasm. The low molecular weight RNA spectrum from the leaf is similar to that observed in callus, with the major small RNA species equally present in both tissues.Abbreviations tRNA transfer RNA - hnRNA heterogenous nuclear RNA - mRNA messenger RNA - scRNA small cytoplasmic RNA - snRNA small nuclear RNA  相似文献   

5.
Although cordycepin 5'-triphosphate (3'-dATP), at low concentrations, preferentially inhibits chromatin-associated poly(A) synthesis in isolated nuclei, higher levels of the inhibitor prevent both rRNA (RNA polymerase I activity) and hnRNA (RNA polymerase II activity) synthesis in vitro (Rose, K.M., Bell, L.E. and Jacob, S.T. (1977) Nature 267, 178-180). The present studies demonstrate that this nucleotide can also inhibit tRNA and 5 S RNA synthesis (RNA polymerase III activity). At 50-200 microgram/ml, 3'-dATP inhibits incorporation of [3H]UTP into tRNA and 5 S RNA by approximately 65%, whereas the syntheses of these RNAs were completely blocked when [3H]GTP was used as the substrate. These data suggest the formation of poly(U) in the tRNA and 5 S RNA regions, which is resistant to 3'-dATP. In contrast, another ATP analog, Ara-ATP, which selectively inhibits poly(A) synthesis, does not block tRNA and 5 S RNA synthesis in isolated nuclei. The production of these RNA species in isolated nuclei is also insensitive to Ara-CTP and 2'-dATP. These data suggest that 3'-dATP exerts general inhibitory effects on RNA synthesis and further substantiate the conclusion that Ara-ATP is a selective inhibitor of the polyadenylation reaction in vitro.  相似文献   

6.
5' Terminal cap structures of hnRNA have been characterized and the extent of capping determined as a function of embryonic development. Sea urchin embryo hnRNA contains only the type-1 cap, m7GpppNmpNp, with the type-2 cap, which has a 2'-0-methylated subpenultimate nucleotide, being associated only with stable small nuclear RNAs. These cap 2-containing RNAs are synthesized at a rate of approximately 70 molecules min-1 nucleus-1 compared to approximately 1000 molecules for hnRNA cap 1. Approximately 70% of nuclear cap 1 is associated with greater than 15S RNA in denaturing solvent, but under non-denaturing conditions the percentage is much higher. Cap 1 in low and high molecular weight nuclear RNA have the same kinetics of methyl labeling. Thus all cap 1 structures may belong to a single class either covalent or H-bonded to high molecular weight RNA. hnRNA greater than 15S is 35% capped; however, adding caps in less than 15S RNA gives an estimate of 50% capping for total hnRNA. In development from early blastula to late gastrula, there is little if any change in the extent of capping of hnRNA. These results coupled with others indicate that the fraction of hnRNA molecules serving as precursor to mRNA does not change quantitatively during embryonic development.  相似文献   

7.
8.
U1 small nuclear RNA is thought to be involved in messenger RNA splicing by binding to complementary sequences in pre-mRNA. We have investigated intermolecular base-pairing between pre-mRNA (hnRNA) and U1 small nuclear RNA by psoralen crosslinking in situ, with emphasis on ribonucleoprotein structure. HeLa cells were pulse-labeled with [3H]uridine under conditions in which hnRNA is preferentially labeled. Isolated nuclei were treated with aminomethyltrioxsalen , which produces interstrand crosslinks at sites of base-pairing between hnRNA and U1 RNA. hnRNA-ribonucleoprotein (hnRNP) particles were isolated in sucrose gradients containing 50% formamide, to dissociate non-crosslinked U1 RNA, and then analyzed by immunoaffinity chromatography using a human autoantibody that is specific for the ribonucleoprotein form of U1 RNA (anti-U1 RNP). After psoralen crosslinking, pulse-labeled hnRNA in hnRNP particles reproducibly bound to anti-U1 RNP. The amount of hnRNA bound to anti-U1 RNP was reduced 80 to 85% when psoralen crosslinking of nuclei was omitted, or if the crosslinks between U1 RNA and hnRNA were photo-reversed prior to immunoaffinity chromatography. Analysis of the proteins bound to anti-U1 RNP after crosslink reversal revealed polypeptides having molecular weights similar to those previously described for U1 RNP. These proteins did not bind to control, non-immune human immunoglobulin G. These results indicate that the subset of nuclear U1 RNA that is base-paired with hnRNA at a given time in the cell is a ribonucleoprotein. This raises the possibility that these proteins, as well as U1 RNA itself, may participate in pre-mRNA splice site recognition by U1 RNP.  相似文献   

9.
10.
The synthesis of ribosomal precursor RNA in Novikoff hepatoma (N1S1) cells is very sensitive to cordycepin (3'-dA). The synthesis of hnRNA, however, is resistant to inhibition concentrations of 3'-dA that completely block the synthesis of 45S ribosomal RNA precursor. We have examined the RNA polymerases present in these cultured cells with regard to their sensitivity to cordycepin 5'-triphosphate (3'-dATP) in an effort to explain the differential inhibition of RNA synthesis observed in vivo. RNA polymerases I and II were characterized on the basis of their chromatographic behavior on DEAE-Sephadex, as well as the response of their enzymatic activities to ionic strength, the divalent metal ions Mn2+ and Mg2+, and the toxin alpha-amanitin. For both enzymes the inhibition of in vitro RNA synthesis by 3'-dATP was competitive for ATP. The km values for ATP and the K1 values for 3'-dATP for the two enzymes were quite similar. RNA polymerase II, the enzyme presumed responsible for hnRNA synthesis, was actually slightly more sensitive to 3'-dATP than RNA polymerase I, the enzyme presumed responsible for ribosomal precursor RNA synthesis. Similar data were obtained when the RNA polymerases were assayed in isolated nuclei. These results indicate that the differential inhibition of RNA synthesis caused by 3'-dA in vivo cannot be simply explained by differential sensitivity of RNA polymerases I and II to 3'-dATP.  相似文献   

11.
S A Fuhrman  G N Gill 《Biochemistry》1975,14(13):2925-2933
In the presence of 50 mM (NH4)2SO4 and low concentrations of alpha-amanitin (7.7 mug/ml), adrenal nuclei synthesize predominately rRNA as characterized by size and base composition. Approximately 10% of the RNA synthesized under these conditions sediments at 4-5 S; this RNA synthesizing activity is inhibited by high concentrations of alpha-amanitin (231 mug/ml) indicating the presence of RNA polymerase III activity. ACTH administration to guinea pigs results in a twofold increase in adrenal nuclear RNA polymerase I and III activities at 14 hr of hormone treatment. Analysis of the amount of radiolabeled nucleoside triphosphate incorporated in vitro into 3' chain termini and into internal nucleotide positions has been utilized to measure the number of RNA chains and the average chain length synthesized in vitro. Incorporation into 3' chain termini is not changed by ACTH; incorporation into internal nucleotides is doubled in parallel with the increase in RNA polymerase I activity. These results are not due to an altered Km of RNA polymerase I for the four nucleoside triphosphates, nor to differential R Nase or phosphatase activity. These studies suggest that the regulation of RNA polymerase I by ACTH is accomplished in part through an increase in the rate of RNA chain elongation.  相似文献   

12.
13.
Isolated HeLa cell nuclei are capable of synthesizing 5S and pre-4S RNA. The labeling of these low molecular weight species has been compared with the labeling of nucleolar RNA and nuclear heterogeneous RNA. The 5S and pre-4S RNA molecules made in vitro were identified by their mobility on SDS acrylamide gels and by the sensitivity of pre-4S RNA to enzymes which cleave it in vitro to 4S RNA. Their mobilities and cleavage properties are similar to the RNA made in vivo. Unlike the nuclear heterogeneous RNA, the synthesis of the two small molecular weight RNAs is resistant to α-amanitin.A large proportion of 4S RNA labeled in vitro appears to be formed de novo. The ratio of the terminal uridine to the internal uridine 3′-monophosphate remains constant with time, even though there is linear incorporation into the pre-4S RNA in the isolated nuclei.Production of the nucleolar RNA and pre-4S RNA has been compared in the presence of various ions. The pre-4S RNA synthesis has a sharper maximum for (NH4)SO4 and MgCl2 than does the synthesis of nucleolar RNA. The in vitro synthesis of pre-4S is more sensitive to ellipticine and pCMB than the production of nucleolar RNA. These differences between the production of pre-4S RNA and nucleolar RNA are discussed with respect to in vitro reinitiation and the possibility that different polymerases are involved in their synthesis.  相似文献   

14.
15.
By continuous perfusion of columns containing isolated immobilized rat liver nuclei with media containing labeled RNA precursors, the in vitro synthesis and release of RNA was studied. The combined reaction of synthesis and release could be adjusted to proceed at a constant rate. The reaction rate responded to variation of termperature, ionic conditions, nucleoside triphosphate concentration and to the addition of RNA polymerase inhibitors. During 60 min perfusion approximately equal amounts of radioactive low molecular weight RNA and of ribonucleoproteins were released. Pulse-chase experiments showed that the low molecular weight RNA was synthesized throughout the perfusion and released immediately after formation. The ribonucleoproteins were primarly labeled during the first period of perfusion and were gradually released. Synthesis of RNA contained in the ribonucleoproteins was inhibited by low alpha-amanitin concentrations, indicating that it was catalyzed by RNA polymerase II. The in vitro labeled ribonucleoproteins exhibited properties of the stable nuclear particles which can be extracted from isolated nuclei after rapid in vivo labeling of RNA. They had a buoyant density of 1.41--1.43 in CsCl, were partially unstable in 1% deoxycholate, but stable in 0.1% deoxycholate, in 100 mM NaCl and in 10 mM EDTA. Due to the dilution by the perfusion medium, the ribonucleoproteins sedimented with a peak at 22--27 S, and not at 30--45 S. The RNA synthesized in the immobilized nuclei was not degraded during the perfusion. Less than 20% was gradually released, whereby the 20--30 S peak zone was reduced. While the properties of the in vitro labeled ribonucleoproteins and of rapidly in vivo labeled ribonucleoproteins were the same, the kinetics of their release differed.  相似文献   

16.
Though vaccinia virus DNA and RNA replication take place predominantly in the cytoplasm of an infected cell, virus formation requires the presence of a functional nucleus in a yet undefined manner. When the nuclei from cells infected for 3 h are isolated and purified, they are found to synthesize five times more RNA in vitro than do corresponding nuclei from noninfected cells. Fifty percent of the RNA synthesized in vitro by nuclei from infected cells is vaccinia specific, and this vaccinia RNA synthesis is resistant to alpha-amanitin concentrations up to 100 micrograms/ml. Furthermore, when the RNA polymerase activities of these nuclei are separated on DEAE-Sephadex columns, 56% of the total nuclear enzyme activity is found to be the vaccinia-specific RNA polymerase known to be alpha-amanitin resistant. The nucleus associated vaccinia RNA polymerase represents 18% of the total cellular vaccinia RNA polymerase. This synthesis of vaccinia RNA in the nucleus may explain the nuclear requirement for vaccinia virus maturation.  相似文献   

17.
18.
Transcription boundaries of U1 small nuclear RNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

19.
A recombinant DNA plasmid, pBR322-GH1, which contains about 80% of the sequences of rat pregrowth hormone (pGH) mRNA, allowed an analysis of nuclear RNA from GH3 cells for possible precursors of cytoplasmic pGH mRNA. A single 20-22S RNA SPECIES ABOUT 2-3 TIMes larger than pGH mRNA was detected in nuclear RNA from GH3 cells labeled for 5 min. with 3H-uridine. After longer label times a 12S RNA indistinguishable in size from cytoplasmic 12S pGH mRNA became the predominant labeled RNA complementary to the plasmid pBR322-GH1. Both of these nuclear RNA species contained poly (A). Kinetic analysis of the labeling of nuclear and cytoplasmic pGH mRNA sequences showed that the 20S and 12S nuclear RNA molecules were labeled before significant labeling of cytoplasmic pGH mRNA was detected, and also indicated that there is complete conservation of nuclear pGH mRNA sequences in the production of cytoplasmic pGH mRNA. These results indicate that cytoplasmic pGH mRNA is generated by nuclear processing of a larger nuclear RNA molecule.  相似文献   

20.
With the aid of a suitable thin layer chromatographic procedure, the N-6 methyl adenylic acid (m6A), content of a variety of 32P labeled RNA species from HeLa cells has been measured. Poly(A)-containing (poly(A)+) cytoplasmic RNA has on the average one m6Ap per 800 to 900 nucleotides. This value is independent of the length of the molecules. The proportion of m6Ap in poly(A)+ cytoplasmic RNA does not change between 4 and 18 hours of labeling with 32P, suggesting that the majority of the messenger RNA molecules may have a similar level of internal methylation regardless of their half-life. The non-polyadenylated, non-ribosomal cytoplasmic RNA fraction sedimenting from 10S TO 28S is less methylated with approximately one m6A per 2,700 nucleotides. Heterogeneous nuclear RNA molecules (DMSO treated) which sediment from 28S to 45S have approximately one m6Ap per 3,000 nucleotides. The hnRNA molecules sedimenting from 10S to 28S have one m6Ap per 1,800 nucleotides. Poly(A)+ nuclear RNA is enriched in m6A, containing 1 residue of m6A per 700 to 800 nucleotides, a value close to that obtained for the polyadenylated cytoplasmic RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号