首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Quantitative samples of Gammarus pulex L. taken from a small Danish stream during 1975 showed mean annual population densities varying from 500 m–2 in early May to 5 500 m–2 in late September. The mean annual biomass was 1.5 g dry weight m–2. No discrete cohorts could be distinguished from the size frequency distributions. Annual production, estimated by the size-frequency method, was 3.9 g dry weight M-2 and P/B ratio was 2.6. The contribution to trout energetics may have been as much as 17%.  相似文献   

2.
The ecology of Lake Nakuru (Kenya)   总被引:11,自引:0,他引:11  
Summary Consumer biomass and spatial distribution in the equatorial alkaline-saline Lake Nakuru were studied from 1972–1976. These data will provide the basis for estimating feeding and production rates and for quantifying energy flow at the consumer level. Two of the main consumers, the Lesser Flamingo (Phoeniconaias minor) and the Soda Tilapia (Sarotherodon alcalicus grahami), were covered by earlier papers. The biomass of the only planktonic crustacean, the copepod Lovenula (=Paradiaptomus) africana was very high (1.5 gDW (dry weight)·m-3, mean in 1972/73) in comparison with other tropical lakes. Lovenula was absent in 1974 and 1975, and at very low levels (0.1–0.4 gDW·m-3) in part of 1976. Among the rotifers Brachionus dimidiatus dominated in 1972/73 (0.2 gDW· m-3), but was outnumbered by B. plicatilis throughout most of 1974 to 1976 (mean total rotifer biomass 1.4 gDW· m-3, peak densities 7 gDW·m-3); during high salinity periods (>20) Hexarthra jenkinae occurred in very low numbers. For short periods rotifers can be the dominant species of L. Nakuru. Aquatic heteroptera (four species) played a minor role: they contributed 0.4% to total consumer biomass in 1972/73; in 1974–1976 the lake had no aquatic heteroptera. Benthic biomass (0.4 gDW·m-2) was within the range of other tropical lakes, it consisted almost exclusively of Leptochironomus deribae. Bird counts of the twelve most important species are given for the years 1972–1974: Pelecanus onocrotalus accounts for 90% of the biomass (0.44 gDW·m-3, mean 1972/73) with peak densities of almost 20,000 birds.-The consumer organisms covered by this and the two preceding papers represent >99% of L. Nakuru's consumer biomass. Population dynamics of various consumer species are discussed.  相似文献   

3.
The population dynamics of trout (Salmo trutta L.) were studied in two high-altitude streams flowing westwards into the River Eden in northern England. The results from one (Knock Ore Gill), which is accessible to spawners from downstream, were compared with published data from an isolated population in a nearby stream which flows eastward into the River Tees. The Knock Ore Gill trout had a population density of 0.4–0.9 fish m–2, a biomass of 12.4 g m–2, annual production of 12–14 g m–2 year–1 and an instantaneous mortality rate of 0.97 year–1. Comparable values from the Tees tributary were 0.2, 3.3, 2.3 and 0.66 respectively. The Knock Ore Gill population also contrasted with that of the Tees tributary in having reliable recruitment from year to year. These differences were related to differences in the chemistry and spate characteristics of the two streams and to the fact that immigrants from downstream were responsible for over 30% of the annual oviposition in Knock Ore Gill.  相似文献   

4.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

5.
The abundance, generation time and production ofChironomus salinarius larvae in a lagoon fish-pond system in the Bay of Cádiz were studied by taking monthly samples at 3 sites during 1991 and 1992. Numerical abundance and biomass of larvae showed considerable spatial, seasonal and interannual variation (ANCOVAs,P<0.001). The maximum mean annual density was 7048 larvae m–2, and corresponded to a biomass of 3.08 g dry weight (DW) m–2. It was recorded at the site with the lowest rate of water renewal. Seasonal patterns were similar at all sites, with main annual peaks of abundance and biomass in autumn-early winter. Chironomid density was positively related to the biomass of benthic macroalgae (P<0.001). The population studied was multivoltine with a probable average of five generations per year, with overlapping cohorts and a predominance of third- and fourth-instar larvae. Estimates of annual production ranged between 72.2 g DW m–2 yr–1 at the site with the lowest rate of water renewal in 1991 and 0.1 g DW m–2 yr–1 at the site with the highest rate of water renewal in 1992. Mean annual production and the production/biomass ratio for the system was estimated to be 16.8 g DW m–2 yr–1 and 12.7, respectively. Possible factors leading to the observed density fluctuations are discussed, as well as possible sources of error in production estimates.  相似文献   

6.
The Grevelingen estuary was cut off from the North Sea and from the influences of the river Rhine by a dam in 1971, and became a stagnant salt-water lake. Production and ecology ofZostera marina L. were studied in 1968 and in 1973–1975, both through standing stock estimations, biomass increases in permanent quadrats, and correlation of distribution patterns with ecological factors. After the closure of the estuary the intertidal eelgrass population extended downwards to 5 m below lake level, probably owing to the increased transparency of the water; the area occupied, and the density of the eelgrass beds increased strongly. Eelgrass annual overground production, based on doubled maximum standing crop values in July–August, was estimated at 50 g C/m2 in 1968, 121 g C/m2 in 1973 and 91 g C/m2 in 1975 inZostera beds, and 4 g C/m2 in 1968, 18 g C/m2 in 1973 and 23 g C/m2 in 1975 for the entire Grevelingen area. A minimum estimate of net production inZostera beds at a depth of 0.50–0.75 m, based on short term changes in biomass in 2 permanent quadrats in 1974 and 1975, was 40.5 g C/m2/yr for overground parts and 12.7 g C/m2/yr for underground parts. Horizontal distribution of celgrass is not primarily limited by grainsize distribution, but more by exposure to wave action and currents. On account of irradiance reduction light is a limiting factor in the vertical distribution of the eelgrass population in Lake Grevelingen. Communication no. 146 of the Delta Institute for Hydrobiological Research, Yerseke, The Netherlands.  相似文献   

7.
Pond cultivation of the subtropical, euryhaline macroscopic red algaGracilaria tenuisipitata var.liui Zhanget Xia was carried out in brackish seawater (6–7) in the Gryt archipelago on the east coast of Sweden, using four outdoor tanks of 30–40 m3. Growth rate and nutrient uptake in batch culture were measured with the aim of estimating the water purification capacity ofG. tenuisipitata in outdoor conditions. Its ability to withstand epiphytic infections was also studied. An average growth rate of 4 biomass increase per day was recorded during two seasons with a maximum growth rate of 9 d–1. The initial biomass was usually 1 kgFW m–3 (FW, fresh weight). The nutrient uptake capacity was on average ca. 1 g Ni kgFW–1 d–1 and 0.08 g Pi kgFW–1 d–1 and the uptake rates for NH4 +-N were higher than those for NO3 -N. Both the growth rate and the nutrient uptake rate were highest at the highest water temperature. Co-cultivation with rainbow trout (Oncorhynchus mykiss) was tested: with trout fodder as the only nutrient inputG. tenuistipitata could grow and maintain low levels of Ni and Pi with optimum efficiency at a trout: alga ratio of 1:1 (w:w). Epiphytic growth of filamentous green and brown algae was limited, probably as a result of the high pH values caused by inorganic carbon uptake byG. tenuistipitata. The growth ofEnteromorpha intestinalis, the only significant epiphyte, was completely inhibited and the majority of plants died by a few days treatment with 100 µg 1–1 Cu2+, a concentration that did not severely affectG. tenuistipitata. We conclude thatG. tenuistipitata can be cultivated in outdoor ponds in southern Sweden during 5–6 months of the year using aerated or unaerated batch cultures and that wastewater from trout cultivation may be used as a nutrient source, resulting in purification with respect to N and P.  相似文献   

8.
Seasonal growth of a Ceratophyllum demersum stand in Lake Vechten, The Netherlands, varied considerably during 1978, '79 and '81. The biomass was highest in 1981 (max. 115 g ash-free dry weight m–2). The 1978 growth trend was similar to that of 1981 with slightly lower net annual production (max. 92 g AFDW m–2). The vegetation almost disappeared in 1979 (max. 24 g AFDW m–2). These large differences in biomass could not be explained by differences in insolation but were mainly attributed to the severe winter of 1978–'79 which slowed plant development and full maturity was attained only after the diurnal insolation had decreased.Reserve carbohydrates were primarily starch and water-soluble sugars. Starch concentrations varied between 71.5 and 24.7 mg g–1 AFDW in the winter and summer, and total sugar concentrations between 24.9 and 20.2 mg g–1 AFDW, respectively. The non-reducing sugars tended to predominate in summer and the reducing sugars in winter. The value of these reserves for maintenance, growth and survival was assessed by calculating plant carbon budgets for several seasons.It was concluded that C. demersum relies heavily on its developmental timing and energy-conserving physiological mechanisms to survive extended periods of stress and in these respects is analogous to a typical terrestrial shade plant.  相似文献   

9.
The seasonal dynamics of forest floor biomass, pattern of litter fall and nutrient return in Central Himalayan oak forests are described. Fresh and partially decomposed litter layers occur throughout the whole year in addition to herbaceous vegetation. The highest leaf litter value is found in April and May and the minimum in September. Partially and largely decomposed litter tended to increase from January to May with a slight decline in June. The wood litter peaked in March and April. The relative contribution of partially decomposed litter to the forest floor remains greatest the year round. The maximum herbaceous vegetation development was found in September with a total annual net production of 104.3 g m-2yr-1. The total calculated input of litter was 480.8 g m-2yr-1. About 68% of the forest floor was replaced each year with a subsequent turnover time of 1.47 yr. The total annual input of litter ranged from 664 (Quercus floribunda site) –952 g m-2 (Q. lanuginosa site), of which tree, shrub and herbaceous litter accounted for respectively 72.0–86.3%, 6.4 – 19.4% and 5.2 – 8.6%. The annual nutrient return through litter fall amounted to (kg ha-1) 178.0 – 291.0 N, 10.0 – 26.9 P, 176.8 – 301.6 Ca, 43.9 – 64.1 K and 3.98 – 6.45 Na. The tree litter showed an annual replacement of 66.0 – 70.0%, for different nutrients the range was 64 and 84%.  相似文献   

10.
The biomass and the production of Argyrodiaptomus furcatus (Sars), the most abundant copepod in Broa Reservoir (São Carlos, São Paulo State), were estimated, determining in the laboratory the development time and the quantity of organic carbon and establishing the relationship between these two parameters. The daily production was calculated from P = B(1- egt) and the annual production was obtained by integrating daily production against time. The maximum production of Argyrodiaptomus furcatus in the reservoir depends on the region considered and on the period of the year. The maximum production was 45.15 mg C m–3d–1 in March, 1976 at station II, region of macrophytes and 6.74 mg C m–3d–1 at station IV, near the dam. The mean production for the year is 6.26 mg C m–3d–1 at station II and 1.43 mg C m–3d–1 at station IV.  相似文献   

11.
Soil core and root ingrowth core methods for assessing fine-root (< 2 mm) biomass and production were compared in a 38-year-old Scots pine (Pinus sylvestris L) stand in eastern Finland. 140 soil cores and 114 ingrowth cores were taken from two mineral soil layers (0–10 cm and 10–30 cm) during 1985–1988. Seasonal changes in root biomass (including both Scots pine and understorey roots) and necromass were used for calculating fine-root production. The Scots pine fine-root biomass averaged annually 143 g/m2 and 217 g/m2 in the upper mineral soil layer, and 118 g/m2 and 66 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The fine-root necromass averaged annually 601 g/m2 and 311 g/m2 in the upper mineral soil layer, and 196 g/m2 and 159 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The annual fine-root production in a Scots pine stand in the 30 cm thick mineral soil layer, varied between 370–1630 g/m2 in soil cores and between 210 – 490 g/m2 in ingrowth cores during three years. The annual production calculated for Scots pine fine roots, varied between 330–950 g/m2 in soil cores and between 110 – 610 g/m2 in ingrowth cores. The horizontal and vertical variation in fine-root biomass was smaller in soil cores than in ingrowth cores. Roots in soil cores were in the natural dynamic state, while the roots in the ingrowth cores were still expanding both horizontally and vertically. The annual production of fine-root biomass in the Scots pine stand was less in root ingrowth cores than in soil cores. During the third year, the fine-root biomass production of Scots pine, when calculated by the ingrowth core method, was similar to that calculated by the soil core method. Both techniques have sources of error. In this research the sampling interval in the soil core method was 6–8 weeks, and thus root growth and death between sampling dates could not be accurately estimated. In the ingrowth core method, fine roots were still growing into the mesh bags. In Finnish conditions, after more than three growing seasons, roots in the ingrowth cores can be compared with those in the surrounding soil. The soil core method can be used for studying both the annual and seasonal biomass variations. For estimation of production, sampling should be done at short intervals. The ingrowth core method is more suitable for estimating the potential of annual fine-root production between different site types.  相似文献   

12.
Summary The influence of temperature on the growth of the theromophilic Bacillus caldotenax was investigated using chemostat techniques and a chemically defined minimal medium. All determined growth constants, that is maximal specific growth rate, yield and maintenance, were temperature dependent. It was striking that the very large maintenance requirement was about 10 times higher than for mesophilic cells under equivalent conditions. A death rate, which was very substantial at optimal and supraoptimal growth temperatures, was estimated by comparing the maintenance for substrate and oxygen. There was no indication for a thermoadaptation as postulated by Haberstich and Zuber (1974).Symbols D Dilution rate (h–1) - Dc=max Critical dilution rate (h–1) - E Temperature characteristic (J mol–1) - k Organism constant - kd Death rate coefficient (h–1) - km Maintenance substrate coefficient estimated from MO (h–1) - MO Maintenance respiration, mmol O2 per g dry biomass and h (mmol g–1h–1) - MO Maintenance respiration, taking kd into account - mS Maintenance substrate coefficient, g glucose per g dry biomass and h (h–1) - OD Optical density at 546 nm - QO2 Specific O2-uptake rate (mmol g–1h–1) - Q O2 V Specific O2-uptake rate for viable portion of biomass (mmol g–1 h–1) - QS Specific glucose uptake rate (h–1) - Q S V Specific glucose uptake rate for viable portion of biomass (h–1) - R Gas constant 8.28 J mol–1K–1 - S Substrate concentration in reactor (g l–1) - SO Influent substrate concentration (g l–1) - Tmax Maximal growth temperature (°C) - Tmin Minimal growth temperature (°C) - X Dry biomass (g l–1) - XtOt=X Dry biomass containing dead and viable cells - Xv Viable portion of biomass - Y O m Potential yield for O2 corrected for maintenance respiration (g mol–1) - Y S m Potential yield for substrate corrected for maintenance requirement, g biomass per g glucose (–) - Specific growth rate (h–1) - max Maximal specific growth rate (h–1)  相似文献   

13.
Urban development, primarily in the Atlanta, Georgia, metropolitan area, caused a significant rise in the volume of treated wastewater discharged into the Chattahoochee River from 1976 to 1985. West Point Lake, 109 km downstream from Atlanta, responded to the increased nutrient loading with an increase in mean annual phytoplankton primary productivity of from 550 mg C m–2 day–1 in 1976 to 1580 mg C m–2 day–1 in 1985, a move from mesotrophic to eutrophic status. Monthly water quality measurements in the lake headwaters failed to detect the trend of increasing enrichment. Phytoplankton chlorophyll a concentrations did not indicate a trend of increasing algal biomass. Increased productivity was caused by improved photosynthetic efficiency that resulted from a shift in the size distribution of algae comprising the phytoplankton community. Larger centric diatoms with relatively slow turnover rates that were dominant during the early years (1976–1980) of impoundment were replaced by smaller green and blue-green algal taxa with faster turnover rates during later years (1981–1985).  相似文献   

14.
López  B.  Sabaté  S.  Gracia  C.A. 《Plant and Soil》2001,230(1):125-134
The biomass, production and mortality of fine roots (roots with diameter <2.5 mm) were studied in a typical Mediterranean holm oak (Quercus ilex L.) forest in NE Spain using the minirhizotron methodology. A total of 1212 roots were monitored between June of 1994 and March of 1997. Mean annual fine root biomass in the holm oak forest of Prades was 71±8 g m–2 yr–1. Mean annual production for the period analysed was 260+11 g m–2 yr–1. Mortality was similar to production, with a mean value of 253±3 g m–2 yr–1. Seasonal fine root biomass presented a cyclic behaviour, with higher values in autumn and winter and lower in spring and summer. Production was highest in winter, and mortality in spring. In summer, production and mortality values were the lowest for the year. Production values in autumn and spring were very similar. The vertical distribution of fine root biomass decreased with increasing depth except for the top 10–20 cm, where values were lower than immediately below. Production and mortality values were similar between 10 and 50 cm depth. In the 0–10 cm and the 50–60 cm depth intervals, both production and mortality were lower.  相似文献   

15.
Productivity studies were carried out from September, 1985 to August, 1987 in two mangrove stands, i.e. estuarine and island fringing, in Dutch bay, a lagoon situated on the northwestern coast of Sri Lanka. Net above-ground primary productivity was measured by monitoring litterfall and above-ground biomass increment. The average annual rate of litterfall in the estuarine and island-fringing mangrove stands are 588.14 g m–2 (approximately 6 t ha–1) and 407.33 g m–2 (approximately 4 t ha–1) respectively. The average annual rates of above ground woody growth are 614.74 g m–2 (approximately 6 t ha–1) in the estuarine stands and 286.8 g m–2 (approximately 3 t ha–1) in the island-fringing mangrove stands. Hence estuarine mangrove stands record a higher annual rate of above-ground net primary production (NPP; 1207.88 g m–2 or approximately 12 t ha–1) than the fringing mangrove stands (694.22 g m–2); approximately 7 t ha–1). The annual rate of NPP in the water front zones of the stands (1300.47 g m–2 in the estuarine stands and 874.56 g m–2 in the fringing stands) are greater than those in the back-mangrove zones (115.28 g m–2 in the estuarine stands and 513.88 g m–2 in the island-fringing stands). These variations may be attributed to the differences in tidal flushing and influence of freshwater in the two localities.  相似文献   

16.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

17.
Microscopic epilithic algae in the River Itchen at Otterbourne near Southampton and in the Ober Water in the New Forest were studied during 1984 and 1985. The River Itchen rises from chalk springs and has a steady pH near 8.2 and a mean alkalinity of 236 mg HCO3 1–1; at the study site the river is about 16 m wide and 20 cm deep, with a mean flow rate of 0.33 m s–1 and a discharge ranging through the year between 0.34 and 2.46 m3 s–1. The Ober Water, which drains sands and gravels, has a pH between 6.9 and 7.2 and a mean alkalinity of about 50 mg HCO3 1–1; at the study site it is about 6 m wide, with a mean flow rate of 0.27 m s–1 and a discharge ranging through the year between 0.08 and 1.0 m3 s–1.Epilithic algae removed from the pebbles that form the major part of the beds of both streams show seasonal changes in abundance and composition. Diatoms peaked in April/May and dominate the epilithic flora in both streams, comprising 70–95% of all algal cells; highest numbers of chlorophytes occurred in summer and cyanophytes increased in autumn. The species composition of the epilithic flora in the two streams was different, as was the population density; algal cell numbers ranged between 500 and 7000 cells mm–2 of stream floor in the River Itchen and between 8 and 320 cells mm–2 of stream floor in the Ober Water. The chlorophyll a content of epilithic algae in the River Itchen ranged between 115 and 415 mg m–2 of stream floor, representing an annual mean biomass of about 8 g m–2, whereas in the Ober Water a chlorophyll a content of 2.2 to 44 mg m–2 of stream floor was found, representing an annual mean biomass of about 1 g m–2. Cautious estimates of the annual production of epilithic algae in these streams suggest a value of about 600 g organic dry weight m–2 in the River Itchen and about 75 g m–2 in the Ober Water.  相似文献   

18.
Marionina southerni (Cernosvitov) was numerically the dominant oligochaete in a shallow, strongly exposed surf zone locality (0–1 m depth) in the mesotrophic Lake Esrom. It comprised 21,500 ind m–2 or nearly 50% of the total oligochaete community, which otherwise was dominated by Nais spp. and the lumbriculid Stylodrilus heringianus Claparède. M. southerni appears to have a 1-y life cycle. Individual biomass ranged from 3 to 48 µg ash free dry weight. Annual net production at the site was 5.1 kcal m–2 (size-frequency method) with a P/B ratio of 2.5. This is about 0.5% of the estimated mean zoobenthic production in the littoral zone from 0 to 2 m depth in Lake Esrom. At 5° C M. southerni showed a constant oxygen uptake down to 25% oxygen saturation, but practically no regulatory respiration was found at 20 °C. In the field M. southerni was never found in sediment with less than 60% oxygen saturation. The annual community respiration of M. southerni was 14.2 kcal m–2, and annual assimilation thus made up 19.3 kcal m–2 with a net production efficiency of 26.5%.  相似文献   

19.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

20.
The large but shallow (3,558 km2, up to 15.3 m deep) lake is eutrophic, with Chironomus plumosus and Potamothrix hammoniensis as dominating macroinvertebrates in the profundal. The extensive well-aerated sublittoral with sandy bottom sediments has a mesotrophic appearance and supports a diverse fauna with several oxyphilous species, including a very abundant population of Dreissena polymorpha. The phytophilous fauna is limited to small sheltered areas only. The average abundance of the small animals of macrozoobenthos (without big molluscs) was 2,617 ind. m–2, their biomass 12.34 g m–2 (corresponding to 52.2 kJ m–2) in 1964–1994. The same figures for big molluscs (mostly Dreissena) were 304 ind. m–2 and 238 g m–2 in 1964–1994, and even 864 ind. m–2 and 687 g m–2 in 1985–1988, at the time of their special mapping. The sublittoral zone revealed the lowest biomass of small animals but the highest biomass of big molluscs. The southern, shallower lake regions, more enriched with nutrients and better protected from wind, revealed a significantly higher biomass of small macrozoobenthos in the near-shore zone than the cleaner and open northern part, while no positive effect of enrichment was observed neither in the biomass of profundal zoobenthos nor in that of big molluscs. The production of the small macrozoobenthos was calculated as 111 and 53 kJ m–2 during two annual cycles in Lake Peipsi s. s., the most productive period being the autumn overturn. Lake Peipsi-Pihkva has the highest abundance and biomass of macrozoobenthos among the large lakes of North Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号