首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytogenetic analysis of leukemic cells obtained at diagnosis from 122 patients with childhood acute lymphoblastic leukemia (ALL) disclosed chromosomal translocations in 36 cases. Two new nonrandom translocations were identified and found to be associated with specific immunophenotypes of the disease. The first, identified in 4 of 16 cases of T-cell ALL positive for sheep erythrocyte receptors (E+), involved the short arm (p) of chromosome 11 and the long arm (q) of chromosome 14 and was designated t(11;14) (p13;q13). The second, found in 7 of 23 cases with a pre-B-cell phenotype, involved the long arm of chromosome 1 and the short arm of chromosome 19; it was designated t(1;19) (q23;p13.3). A third abnormality involving a common breakpoint on chromosome 12 (band p 12) was also identified. These two new differentiation-specific translocations suggest a mechanism for aberrant expression of genes that influence lymphoid cell growth and development, as well as leukemogenesis.  相似文献   

2.
Chromosomal translocations and deletions are among the major events that initiate neoplasia. For lymphoid chromosomal translocations, misrecognition by the RAG (recombination activating gene) complex of V(D)J recombination is one contributing factor that has long been proposed. The chromosomal translocations involving LMO2 (t(11;14)(p13;q11)), Ttg-1 (t(11;14)(p15;q11)), and Hox11 (t(10;14)(q24;q11)) are among the clearest examples in which it appears that a D or J segment has synapsed with an adventitious heptamer/nonamer at a gene outside of one of the antigen receptor loci. The interstitial deletion at 1p32 involving SIL (SCL-interrupting locus)/SCL (stem cell leukemia) is a case involving two non-V(D)J sites that have been suggested to be V(D)J recombination mistakes. Here we have used our human extrachromosomal substrate assay to formally test the hypothesis that these regions are V(D)J recombination misrecognition sites and, more importantly, to quantify their efficiency as V(D)J recombination targets within the cell. We find that the LMO2 fragile site functions as a 12-signal at an efficiency that is only 27-fold lower than that of a consensus 12-signal. The Ttg-1 site functions as a 23-signal at an efficiency 530-fold lower than that of a consensus 23-signal. Hox11 failed to undergo recombination as a 12- or 23-signal and was at least 20,000-fold less efficient than consensus signals. SIL has been predicted to function as a 12-signal and SCL as a 23-signal. However, we find that SIL actually functions as a 23-signal. These results provide a formal demonstration that certain chromosomal fragile sites can serve as RAG complex targets, and they determine whether these sites function as 12- versus 23-signals. These results quantify one of the three major factors that determine the frequency of these translocations in T-cell acute lymphocytic leukemia.  相似文献   

3.
High-resolution cytogenetics analysis of peripheral blood lymphocytes was done prospectively on 27 of 28 patients with features of DiGeorge anomaly. Twenty-two patients (81%) had normal chromosome studies with no detectable deletion in chromosome 22. Five patients (18%) had demonstrable chromosome abnormalities. Three patients had monosomy 22q11, one due to a 4q;22q translocation, one due to a 20q;22q translocation, and one due to an interstitial deletion of 22q11. One patient had monosomy 10p13, and one patient had monosomy 18q21.33, although the latter had subsequent resolution of T-cell defects. These findings are consistent with the heterogeneity of DiGeorge anomaly but confirm the association with monosomy 22q11 in some cases. However, monosomy 10p13 may also lead to this phenotype. Because of these associated chromosome findings, cytogenetic analyses should be done on patients with suspected DiGeorge anomaly. This is particularly important since many of the abnormalities involving chromosome 22 are translocations that can be familial with a higher recurrence risk. Since only one subtle, interstitial deletion of chromosome 22 was observed, it is not clear whether high-resolution cytogenetic analysis is cost beneficial for all such patients.  相似文献   

4.
Among 11,915 consecutive patients and 37 normal controls who had chromosome analysis at the Mayo Clinic between 1978 and 1984, 83 had a single sporadic metaphase with a 7;14 translocation. In 81 of the translocations, the breakpoints were at 14q11 and either 7q34 (type I) or 7p13 (type II): type I translocations occurred in 42 patients, and type II, in 39. The two other translocations had different breakpoints: one was t(7;14)(q11;q32), and the other was t(7;14)(p13;q32). All type I and type II translocations occurred in phytohemagglutinin-stimulated lymphocyte cultures; their combined incidence was 4.88 X 10(-4) per metaphase (81 of 165,991 metaphases) in such cultures. No type I or II translocation was found among 6,713 fibroblast metaphases, 33,463 amniocyte metaphases, or 68,972 bone marrow and unstimulated peripheral blood metaphases. One variant 7;14 translocation occurred in a phytohemagglutinin-stimulated culture, and the other occurred in a fibroblast culture. We did not find a correlation of sporadic 7;14 translocations with any month or season of the year or with patient age or sex. Of the 83 patients, 78 had various clinical disorders, three had ataxia-telangiectasia, one was a normal control, and one was an artificial insemination donor. Follow-up studies on 64 (77%) patients indicate that, to date, none have developed any malignant process subsequent to chromosome analysis. Except for ataxia-telangiectasia, the occurrence of types I and II translocations in lymphocyte cultures may have little, if any, clinical significance. The biological significance of these translocations may be the association of genes in chromosome bands 14q11, 7p13, and 7q34 with the normal physiology of lymphocytes such as the alpha- and beta-chains for T-cell antigen receptor.  相似文献   

5.
6.
7.
The LIM-only protein LMO2 is expressed aberrantly in acute T-cell leukaemias as a result of the chromosomal translocations t(11;14) (p13;q11) or t(7;11) (q35;p13). In a transgenic model of tumorigenesis by Lmo2, T-cell acute leukaemias arise after an asymptomatic phase in which an accumulation of immature CD4(-) CD8(-) double negative thymocytes occurs. Possible molecular mechanisms underlying these effects have been investigated in T cells from Lmo2 transgenic mice. Isolation of DNA-binding sites by CASTing and band shift assays demonstrates the presence of an oligomeric complex involving Lmo2 which can bind to a bipartite DNA motif comprising two E-box sequences approximately 10 bp apart, which is distinct from that found in erythroid cells. This complex occurs in T-cell tumours and it is restricted to the immature CD4(- )CD8(-) thymocyte subset in asymptomatic transgenic mice. Thus, ectopic expression of Lmo2 by transgenesis, or by chromosomal translocations in humans, may result in the aberrant protein interactions causing abnormal regulation of gene expression, resulting in a blockage of T-cell differentiation and providing precursor cells for overt tumour formation.  相似文献   

8.
A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.  相似文献   

9.
A highly malignant human T-cell receptor (TCR) gamma/delta+ T-cell leukemia was shown to have a productive rearrangement of the TCR delta locus on one chromosome 14 and a novel t(8;14)(q24;q11) rearrangement involving the J delta 1 gene segment on the other chromosome 14. Chromosome walking coupled with pulsed-field gel electrophoretic (PFGE) analysis determined that the TCR J delta 1 gene fragment of the involved chromosome was relocated approximately 280 kb downstream of the c-myc proto-oncogene locus found on chromosome band 8q24. This rearrangement was reminiscent of the Burkitt's lymphoma variants that translocate to a region identified as the pvt-1 locus. Sequence comparison of the breakpoint junctions of interchromosomal rearrangements in T-cell leukemias involving the TCR delta-chain locus revealed novel signal-like sequence motifs, GCAGA(A/T)C and CCCA(C/G)GAC. These sequences were found on chromosome 8 at the 5' flanking site of the breakpoint junction of chromosome 8 in the TCR gamma/delta leukemic cells reported here and also on chromosome 1 in T-cell acute lymphocytic leukemia patients carrying the t(1;14)(p32;q11) rearrangement. These results suggest that (i) during early stages of gamma delta T-cell ontogeny, the region 280 kb 3' of the c-myc proto-oncogene on chromosome 8 is fragile and accessible to the lymphoid recombination machinery and (ii) rearrangements to both 8q24 and 1p32 may be governed by novel sequence motifs and be subject to common enzymatic mechanisms.  相似文献   

10.
Summary A double balanced reciprocal translocation involving four chromosomes, t(1;19;6;14) (1p11; 19p11; 6q25; 14q21), was found in the phenotypically normal husband in a couple referred because of repeated abortions. Reciprocal translocations, t(6;14), had been transmitted by his mother, his father being apparently homozygous for a translocation comprising pairs 1 and 19-t(1;19)(1;19). The genetic consequences of this complex chromosomal rearrangement are analyzed.  相似文献   

11.
Summary Human T cell malignancies often show chromosome breaks at 14q11, within the chain locus of the human T cell antigen receptor, with translocation of the distal portion of 14 to one of several sites. In patients with ataxia telangiectasia (A-T) the majority of T cell chromosome translocations associated with this disorder appear to occur at the sites of the T cell antigen receptor genes 7p14, 7q35, and 14q11 and may result in clone formation. In three large proliferating A-T T cell clones we have observed (including one which became malignant) and in most T cell tumours reported, the clonal chromosome exchange involves one breakpoint at 14q11 with the second breakpoint occurring in a gene not involved in the immunoglobulin supergene family. Our observations on A-T patients confirm the suggestion that chromosome exchanges involving either t(7;14)(p14;q11), t(7;14)(q35;q11), inv(7) (p14q35), or t(7;7)(p14;q35) confer only a small proliferative advantage on T cells in vivo without the capacity for malignant transformation and that the potential for malignant change is not a feature of all these rearrangements, but is restricted to cells or clones with other chromosome exchanges.  相似文献   

12.
Patients with the recessively inherited disorder ataxia telangiectasia (AT) are particularly prone to the development of both B-cell and T-cell tumours. Specific translocations involving T-cell gene rearrangements and an unknown locus 3' of IGH have been described in AT T-cell clone and tumour cells. We describe here a t(2;14)(p11;q32) translocation which was observed in nonmalignant short-term-cultured B lymphocytes from an AT patient. In vivo, the clone of cells grew from 1% to 6% of the total cell population over a period of 2 yr. Clonal translocations may therefore be associated with AT B cells, as well as AT T cells. B lymphocytes were transformed with Epstein-Barr virus, and the t(2;14) translocation cell was cellularly cloned. Using Southern filter analysis and in situ hybridisation to define more clearly the positions of the breakpoints, we show that the translocation at 14q32 involves a deletion within the IGH chain gene of at least J1, J2, DQ52, and sequences 1.5 kb 5' of DQ52 and that the breakpoint is either adjacent to the non-deleted JH sequences or upstream of these sequences, within the D or V regions, but proximal to all members of the VHII family of genes. The breakpoint at 2p11 is outside and proximal to IGK with respect to the centromere in an unknown gene. Sub-lines with an initially low proportion of translocation cells eventually became monoclonal in vitro for these cells. This suggests they have a growth advantage in vitro.  相似文献   

13.
Summary This study describes 12 examples of translocations between chromosomes 7 and 14 in short-term peripheral blood lymphocyte cultures from 10 patients investigated in a routine cytogenetic series. Only one constant breakpoint was found on 14q, and chromosome 7 had two constant breakpoints, one on 7p and the other on 7q. The cause and true significance of such nonrandom in vitro chromosome translocations is not known at present, but one may speculate as to their possible indication of heterozygosity for a chromosome instability syndrome and thus a predilection for the development of lymphoid or other malignancy.  相似文献   

14.
Summary Leukemic cells with reciprocal translocations involving 11p13 and 14q13 were obtained from two patients with T-cell acute lymphoblastic leukemia and fused with mouse Ltk- cells. DNA from independent hybrid clones was screened by Southern blot and hybridization to molecular probes for the human catalase and Ha-ras-1 genes. Several clones showed segregation of these two genes, indicating the presence of either the der 11 or der 14 human chromosomes. When DNA from these hybrid clones was examined for the presence of the human genes for calcitonin and γ-globin, both genes were found to segregate with the Ha-ras-1 gene and the der14 chromosome indicating that they lie distal to catalase. When the hybrid clones were examined for the presence of human lactate dehydrogenase A (LDH A) activity, only those clones containing the der14 chromosome expressed activity indicating that the LDH A gene is also distal to catalase on the short arm of chromosome 11.  相似文献   

15.
To isolate DNA segments specific to chromosome band 14q11, which has been implicated in a number of human T-cell malignancies, a genomic DNA library was prepared from a variant cell subline of the human lymphoblastic KE37 cell line. This subline (KE37-R) bears a t(8;14) (q24;q11) translocation, and the breakpoint on the resulting chromosome 8q+ has been located at the 3' end of the third c-myc exon. Three molecular clones were isolated by screening the library with a c-myc exon 3 probe, and one of them (lambda K40) was analyzed in detail. It contains a 15-kb insert consisting of 4.5 kb of sequence from chromosome 8 (e.g., downstream of c-myc exon 3) and sequences from chromosome 14. The origin of these latter sequences was established by hybridizing DNA from chromosomes sorted by flow cytometry to a lambda K40 subclone containing only chromosome 14 presumptive sequences and by Southern blot analysis of rodent X human somatic hybrid cell DNA with the same probe. No cross-hybridization was found between the lambda K40 clone and a cDNA clone for the alpha chain T-cell receptor gene which is also located in 14q11. A preliminary survey of DNAs from human T-cell malignancies with a probe corresponding to chromosome 14 sequences of lambda K40 clone revealed for some of them restriction patterns different from those of the germ line DNA. The fact that the rearrangement observed in a leukemic patient was not found in DNA from lymphocytes obtained during remission excluded any polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Most Robertsonian translocations are dicentric, suggesting that the location of chromosomal breaks leading to their formation occur in the acrocentric short arm. Previous cytogenetic and molecular cytogenetic studies have shown that few Robertsonian translocations retain ribosomal genes or beta-satellite DNA. Breakpoints in satellite III DNA, specifically between two chromosome 14-specific subfamilies, pTRS-47 and pTRS-63, have been indicated for most of the dicentric 14q21q and 13q14q translocations that have been studied. We have analyzed the structure of 36 dicentric translocations, using several repetitive DNA probes that localize to the acrocentric short arm. The majority of the translocations retained satellite III DNA, while others proved variable in structure. Of 10 14q21q translocations analyzed, satellite III DNA was undetected in 1; 6 retained one satellite III DNA subfamily, pTRS-47; and 3 appeared to contain two 14-specific satellite III DNA sub-families, pTRS-47 and pTRS-63. In 10/11 translocations involving chromosome 15, the presence of satellite III DNA was observed. Our results show that various regions of the acrocentric short arm, and, particularly, satellite III DNA sequences, are involved in the formation of Robertsonian translocations.  相似文献   

17.
In a series of 121 consecutive patients with a myelodysplastic syndrome (MDS), studied in two laboratories, of which 87 (71.9%) had abnormal karyotypes, twelve had a structural abnormality of the long arm of chromosome 11 (13.8%). There were six deletions, one ring chromosome and five reciprocal translocations, all involving a chromosome band 11q23. Of these twelve patients, five had a refractory anemia (RA) and seven a refractory anemia with excess of blasts (RAEB). RA was associated more frequently with 11q deletions as the sole abnormality, while translocations or multiple chromosome abnormalities were commonly associated with RAEB. The study shows that the 11q aberrations represent frequent structural chromosome rearrangements in MDS.  相似文献   

18.
ATM is the master regulator of the cellular response to DNA double strand breaks (DSBs). Deficiency of ATM predisposes humans and mice to αβ T lymphoid cancers with clonal translocations between the T cell receptor (TCR) α/δ locus and a 450 kb region of synteny on human chromosome 14 and mouse chromosome 12. While these translocations target and activate the TCL1 oncogene at 14q32 to cause T cell pro-lymphocytic leukemia (T-PLL), the TCRα/δ;14q32 translocations in ATM-deficient T cell acute lymphoblastic leukemia (T-ALL) have not been characterized and their role in cancer pathogenesis remains unknown. The corresponding lesion in Atm-deficient mouse T-ALLs is a chromosome t(12;14) translocation with Tcrδ genes fused to sequences on chromosome 12; although these translocations do not activate Tcl1, they delete the Bcl11b haploinsufficient tumor suppressor gene. To assess whether Tcrδ translocations that inactivate one copy of Bcl11b promote transformation of Atm-deficient cells, we analyzed Atm−/− mice with mono-allelic Bcl11b deletion initiating in thymocytes concomitant with Tcrδ recombination. Inactivation of one Bcl11b copy had no effect on the predisposition of Atm−/− mice to clonal T-ALLs. Yet, none of these T-ALLs had a clonal chromosome t(12;14) translocation that deleted Bcl11b indicating that Tcrδ translocations that inactivate a copy of Bcl11b promote transformation of Atm-deficient thymocytes. Our data demonstrate that antigen receptor locus translocations can cause cancer by deleting a tumor suppressor gene. We discuss the implications of these findings for the etiology and therapy of T-ALLs associated with ATM deficiency and TCRα/δ translocations targeting the 14q32 cytogenetic region.  相似文献   

19.
Different parental translocations were observed in 11 out of 59 families where a child with Patau's syndrome was born. All cases, except for one with t(13; 18) (q14; q23) in the father, revealed the Robertsonian translocations. In most cases there were t(13; 14). The t(13; 15) and t(13; 13) translocations were detected in one mother each. The latter woman bore three babies with Patau's syndrome. One boy in this series had trisomy 13 and sporadic translocation t(2; 22) (q31; q13) simultaneously.  相似文献   

20.
Robertsonian translocations are usually ascertained through abnormal children, making proposed phenotypic effects of apparently balanced translocations difficult to study in an unbiased way. From molecular genetic studies, though, some apparently balanced rearrangements are now known to be associated with phenotypic abnormalities resulting from uniparental disomy. Molecular explanations for other cases in which abnormality is seen in a balanced translocation carrier are being sought. In the present paper, an infant is described who has retarded growth, developmental delay, gross muscular hypotonia, slender habitus, frontal bossing, micrognathia, hooked nose, abundant wispy hair, and blue sclerae. Cytogenetically, she appeared to be a carrier of a balanced, paternally derived 14;21 Robertsonian translocation. Analysis of DNA polymorphisms showed that she had no paternal allele at the D14S13 locus (14q32). Study of additional DNA markers within 14q32 revealed that her previously undescribed phenotype results from an interstitial microdeletion within 14q32. Fluorescent in situ hybridization was used to show that this microdeletion had occurred de novo on the Robertsonian translocation chromosome. These observations may reactivate old suspicions of a causal association between Robertsonian translocations and de novo rearrangements in offspring; a systematic search for similar subcytogenetic rearrangements in other families, in which there are phenotypically abnormal children with apparently balanced translocations, may be fruitful. The clinical and molecular genetic data presented also define a new contiguous gene syndrome due to interstitial 14q32 deletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号