首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cultured rat dorsal root ganglia neurons, we measured membrane currents, using the patch-clamp whole-cell technique, and the concentrations of free Ca(2+) in the cytosol ([Ca(2+)](i)) and in the lumen of the endoplasmic reticulum (ER) ([Ca(2+)](L)), using high- (Fluo-3) and low- (Mag-Fura-2) affinity Ca(2+)-sensitive fluorescent probes and video imaging. Resting [Ca(2+)](L) concentration varied between 60 and 270 microM. Activation of ryanodine receptors by caffeine triggered a rapid fall in [Ca(2+)](L) levels, which amounted to only 40--50% of the resting [Ca(2+)](L) value. Using electrophysiological depolarization, we directly demonstrate the process of Ca(2+)-induced Ca(2+) release triggered by Ca(2+) entry through voltage-gated Ca(2+) channels. The amplitude of Ca(2+) release from the ER lumen was linearly dependent on I(Ca).  相似文献   

2.
We have studied histamine (HA)-evoked intracellular Ca(2+) release in single, freshly isolated myocytes from the guinea pig urinary bladder. Short applications of histamine (5 s) produced a thapsigargin (TG)-sensitive transient increase in intracellular calcium concentration ([Ca(2+)](i)). It was established that histamine and caffeine (Caff) released Ca(2+) from the same intracellular stores in these cells. Reducing the Ca(2+) content of internal stores by incubating cells with U-73343 or cyclopiazonic acid (CPA) inhibited the histamine-evoked Ca(2+) release in 69% and 60% of cells, respectively. Under these conditions, all cells released Ca(2+) in response to either caffeine or acetylcholine (ACh). However, decreasing internal Ca(2+) stores by removing external Ca(2+) inhibited histamine-induced Ca(2+) mobilization in only 22% of cells. A similar small fraction of cells was inhibited when sarcoplasmic reticulum (SR) Ca(2+) pumps were quickly blocked to avoid a significant reduction of luminal Ca(2+). In conclusion, lowering the luminal Ca(2+) content in combination with an impairment of the SR Ca(2+) pump activity significantly diminishes the ability of histamine to evoke an all-or-none intracellular Ca(2+) release.  相似文献   

3.
Fast two-dimensional confocal microscopy and the Ca(2+) indicator fluo-4 were used to study excitation-contraction (E-C) coupling in cat atrial myocytes which lack transverse tubules and contain both subsarcolemmal junctional (j-SR) and central nonjunctional (nj-SR) sarcoplasmic reticulum. Action potentials elicited by field stimulation induced transient increases of intracellular Ca(2+) concentration ([Ca(2+)](i)) that were highly inhomogeneous. Increases started at distinct subsarcolemmal release sites spaced approximately 2 microm apart. The amplitude and the latency of Ca(2+) release from these sites varied from beat to beat. Subsarcolemmal release fused to build a peripheral ring of elevated [Ca(2+)](i), which actively propagated to the center of the cells via Ca(2+)-induced Ca(2+) release. Resting myocytes exhibited spontaneous Ca(2+) release events, including Ca(2+) sparks and local (microscopic) or global (macroscopic) [Ca(2+)](i) waves. The microscopic [Ca(2+)](i) waves propagated in a saltatory fashion along the sarcolemma ("coupled" Ca(2+) sparks) revealing the sequential activation of Ca(2+) release sites of the j-SR. Moreover, during global [Ca(2+)](i) waves, Ca(2+) release was evident from individual nj-SR sites. Ca(2+) release sites were arranged in a regular three-dimensional grid as deduced from the functional data and shown by immunostaining of ryanodine receptor Ca(2+) release channels. The longitudinal and transverse distances between individual Ca(2+) release sites were both approximately 2 microm. Furthermore, electron microscopy revealed a continuous sarcotubular network and one peripheral coupling of j-SR with the sarcolemma per sarcomere. The results demonstrate directly that, in cat atrial myocytes, the action potential-induced whole-cell [Ca(2+)](i) transient is the spatio-temporal summation of Ca(2+) release from subsarcolemmal and central sites. First, j-SR sites are activated in a stochastic fashion by the opening of voltage-dependent sarcolemmal Ca(2+) channels. Subsequently, nj-SR sites are activated by Ca(2+)-induced Ca(2+) release propagating from the periphery.  相似文献   

4.
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak induced by the stimulus. Instead, when protonophores were added after cell stimulation, they did not modify [Ca(2+)](c) kinetics and inhibited Ca(2+) release from Ca(2+)-loaded mitochondria. This effect was due to inhibition of mitochondrial Na(+)/Ca(2+) exchange, because blocking this system with CGP37157 produced no further effect. Increasing extramitochondrial [Ca(2+)](c) triggered fast Ca(2+) release from these depolarized Ca(2+)-loaded mitochondria, both in intact or permeabilized cells. These effects of protonophores were mimicked by valinomycin, but not by nigericin. The observed mitochondrial Ca(2+)-induced Ca(2+) release response was insensitive to cyclosporin A and CGP37157 but fully blocked by ruthenium red, suggesting that it may be mediated by reversal of the Ca(2+) uniporter. This novel kind of mitochondrial Ca(2+)-induced Ca(2+) release might contribute to Ca(2+) clearance from mitochondria that become depolarized during Ca(2+) overload.  相似文献   

5.
Multiple mechanisms that maintain Ca(2+) homeostasis and provide for Ca(2+) signalling operate in the somatas and neurohypophysial nerve terminals of supraoptic nucleus (SON) neurones. Here, we examined the Ca(2+) clearance mechanisms of SON neurones from adult rats by monitoring the effects of the selective inhibition of different Ca(2+) homeostatic molecules on cytosolic Ca(2+) ([Ca(2+)](i)) transients in isolated SON neurones. In addition, we measured somatodendritic vasopressin (AVP) release from intact SON tissue in an attempt to correlate it with [Ca(2+)](i) dynamics. When bathing the cells in a Na(+)-free extracellular solution, thapsigargin, cyclopiazonic acid (CPA), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and the inhibitor of plasma membrane Ca(2+)-ATPase (PMCA), La(3+), all significantly slowed down the recovery of depolarisation (50 mM KCl)-induced [Ca(2+)](i) transients. The release of AVP was stimulated by 50 mM KCl, and the decline in the peptide release was slowed by Ca(2+) transport inhibitors. In contrast to previous reports, our results show that in the fully mature adult rats: (i) all four Ca(2+) homeostatic pathways, the Na(+)/Ca(2+) exchanger, the endoplasmic reticulum Ca(2+) pump, the plasmalemmal Ca(2+) pump and mitochondria, are complementary in actively clearing Ca(2+) from SON neurones; (ii) somatodendritic AVP release closely correlates with intracellular [Ca(2+)](i) dynamics; (iii) there is (are) Ca(2+) clearance mechanism(s) distinct from the four outlined above; and (iv) Ca(2+) homeostatic systems in the somatas of SON neurones differ from those expressed in their terminals.  相似文献   

6.
Secretion from single pancreatic beta-cells was imaged using a novel technique in which Zn(2+), costored in secretory granules with insulin, was detected by confocal fluorescence microscopy as it was released from the cells. Using this technique, it was observed that secretion from beta-cells was limited to an active region that comprised approximately 50% of the cell perimeter. Using ratiometric imaging with indo-1, localized increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) evoked by membrane depolarization were also observed. Using sequential measurements of secretion and [Ca(2+)](i) at single cells, colocalization of exocytotic release sites and Ca(2+) entry was observed when cells were stimulated by glucose or K(+). Treatment of cells with the Ca(2+) ionophore 4-Br-A23187 induced large Ca(2+) influx around the entire cell circumference. Despite the nonlocalized increase in [Ca(2+)](i), secretion evoked by 4-Br-A23187 was still localized to the same region as that evoked by secretagogues such as glucose. It is concluded that Ca(2+) channels activated by depolarization are localized to specific membrane domains where exocytotic release also occurs; however, localized secretion is not exclusively regulated by localized increases in [Ca(2+)](i), but instead involves spatial localization of other components of the exocytotic machinery.  相似文献   

7.
The binding of vanadate to isolated sarcoplasmic reticulum (SR) membranes was measured colorimetrically by equilibrium sedimentation and ion exchange column filtration. The concentration dependence of vanadate binding exhibited a biphasic curve with two phases of equal amplitude. A similar biphasic curve of the vanadate dependence was observed with the purified Ca(2+)-ATPase prepared by deoxycholate extraction. Sites of vanadate binding could be classified into two distinct species based on apparent affinity; the high-affinity binding sites have a dissociation constant below 0.1 microM, and the low-affinity sites one of 36 microM. The maximum amount of vanadate bound to each of the high- or low-affinity sites was estimated to be 2.6-3.6 nmol/mg SR protein, which corresponds to approximately 0.5 mol of vanadate bound per mol of Ca(2+)-ATPase. These results indicate that 1 mol of Ca(2+)-ATPase contains 0.5 mol of high-affinity vanadate-binding sites as well as 0.5 mol of low-affinity vanadate-binding sites. Vanadate binding to the low-affinity sites was competitively inhibited by inorganic phosphate, while vanadate binding to the high-affinity sites resulted in a non-competitive inhibition of the phosphoenzyme formation from inorganic phosphate. When SR membrane were solubilized with polyoxy-ethylene-9-laurylether (C12E9), the vanadate binding exhibited a monophasic concentration dependency curve with a dissociation constant of 13 microM. The number of vanadate-binding sites was estimated to be 7.2 nmol/mg SR protein which represents about 1 mol of site per mol of Ca(2+)-ATPase. Vanadate binding to the solubilized Ca(2+)-ATPase was competitively inhibited by inorganic phosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.  相似文献   

9.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

10.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

11.
We report here a combination of site-directed mutations that eliminate the high-affinity Ca(2+) response of the large-conductance Ca(2+)-activated K(+) channel (BK(Ca)), leaving only a low-affinity response blocked by high concentrations of Mg(2+). Mutations at two sites are required, the "Ca(2+) bowl," which has been implicated previously in Ca(2+) binding, and M513, at the end of the channel's seventh hydrophobic segment. Energetic analyses of mutations at these positions, alone and in combination, argue that the BK(Ca) channel contains three types of Ca(2+) binding sites, one of low affinity that is Mg(2+) sensitive (as has been suggested previously) and two of higher affinity that have similar binding characteristics and contribute approximately equally to the power of Ca(2+) to influence channel opening. Estimates of the binding characteristics of the BK(Ca) channel's high-affinity Ca(2+)-binding sites are provided.  相似文献   

12.
CCK(A) receptors are present on vagal afferent fibers. The objectives of this study were to identify the presence of high- and low-affinity CCK(A) receptors on nodose ganglia and to characterize the intracellular calcium signal transduction activated by CCK. Stimulation of acutely isolated nodose ganglion cells from rats with 1 nM CCK-8 primarily evoked a Ca(2+) transient followed by a sustained Ca(2+) plateau (45% of cells responded), whereas 10 pM CCK-8 evoked Ca(2+) oscillations (37% of cells responded). CCK-OPE, a high-affinity agonist and low-affinity antagonist of CCK(A) receptors, primarily elicited Ca(2+) oscillations (29% of cells responded). CCK-OPE inhibited the Ca(2+) transient induced by 1 nM CCK-8 but not by carbachol and high K(+). This result suggests the presence of high- and low-affinity states of CCK(A) receptors on nodose ganglia. We further demonstrated that nicardipine (10 microM) but not omega-conotoxins GVIA and MVIIC (10-100 nM) abolished Ca(2+) signaling induced by CCK-8, indicating that an L-type voltage-dependent Ca(2+) channel and not an N- or Q-type Ca(2+) channel is coupled to CCK(A) receptors. In a separate study, we showed that the G protein activator NaF (10 mM) elicited a Ca(2+) transient and inhibited CCK-8-evoked Ca(2+) signaling, indicative of G protein(s) involvement in CCK(A) receptor activity. The G(q) protein antagonist Gp antagonist-2A (10 microM) also abolished the action of CCK-8. This study indicates that CCK(A) receptors exist in both high- and low-affinity states in the nodose ganglia. Activation of high-affinity CCK(A) receptors elicits Ca(2+) oscillations, whereas stimulation of low-affinity CCK(A) receptors evokes a sustained Ca(2+) plateau. These Ca(2+)-signaling modes are mediated through the L-type Ca(2+) channel and involve the participation of G(q) protein.  相似文献   

13.
Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.  相似文献   

14.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

15.
Effects of epidermal growth factor (EGF) on the intracellular Ca(2+) ([Ca(2+)](i)) responses to nucleotides, Ca(2+) release from thapsigargin-sensitive stores and capacitative Ca(2+) entry were investigated in cultured mouse mammary epithelial cells. EGF treatment induced proliferation of mammary epithelial cells. We checked for mitotic activity by immunocytochemistry with an anti-PCNA (proliferating cell nuclear antigen) antibody, which stains nuclei of the cells in S-phase of cell cycle. EGF treatment apparently increased the number of PCNA-stained cells compared to those treated with differentiating hormones (insulin, prolactin and cortisol) or without any hormone. Application of EGF did not induce any acute [Ca(2+)](i) response. EGF treatment for 1-2 days in culture, however, enhanced [Ca(2+)](i) responses including [Ca(2+)](i) increase by ATP, UTP and other nucelotides, Ca(2+) release from thapsigargin-sensitive stores, as well as capacitative Ca(2+) entry. Genistein, a tyrosine kinase inhibitor, prevented EGF-induced cell proliferation and the [Ca(2+) ](i) responses in a dose-dependent manner. These results indicate that EGF treatment enhances Ca(2+) mobilization and capacitative Ca(2+) entry, well correlated with cellular proliferation in mammary epithelial cells.  相似文献   

16.
This study examined the effect of nitric oxide (NO) on the cytosolic free Ca(2+) concentration ([Ca(2+)](c)) of alpha-cells isolated from rat pancreatic islets. When extracellular glucose was reduced from 7 to 0 mM, about half of the alpha-cells displayed [Ca(2+)](c) oscillations. Nicardipine, a Ca(2+) channel blocker, terminated the oscillations, while thapsigargine, an inhibitor of Ca(2+)-ATPase on the endoplasmic reticulum, did not affect them, suggesting that the [Ca(2+)](c) oscillations were produced by periodic Ca(2+) influx via L-type voltage-operated Ca(2+) channels. NOC 7, an NO donor, did not cause any changes in [Ca(2+)](c) at 7 mM glucose, but reduced [Ca(2+)](c) or terminated [Ca(2+)](c) oscillations at 0 or 2.8 mM glucose. A similar inhibitory effect on [Ca(2+)](c) of alpha-cells was caused by 8-bromo-cGMP. When the [Ca(2+)](c) of alpha-cells was elevated by L-arginine in the presence of N(omega)-nitro-L-arginine, an NO synthase inhibitor, the subsequent application of NOC 7 and 8-bromo-cGMP reduced [Ca(2+)](c). As there is a direct relationship between [Ca(2+)](c) and glucagon release, these results suggest that the NO-cGMP system in rat pancreatic islets reduces glucagon release by suppressing [Ca(2+)](c) responses in alpha-cells.  相似文献   

17.
Fertilized mouse eggs exhibit repetitive rises in intracellular Ca(2+) concentration ([Ca(2+)](i)) necessary for egg activation. Precise spatiotemporal dynamics of each [Ca(2+)](i) rise were investigated by high-speed Ca(2+) imaging during early development of monospermic eggs. Every [Ca(2+)](i) rise involved a Ca(2+) wave. In the first Ca(2+) transient, [Ca(2+)](i) increased in two steps separated by a "shoulder" point, suggesting two distinct Ca(2+) release mechanisms. The first step was a Ca(2+) wave that propagated from the sperm-fusion site to its antipode in 4-5 s (velocity, approximately 20 microm/s in most eggs). The second step from the shoulder to the peak was a nearly uniform [Ca(2+)](i) rise of 12-15 s. A slight cytoplasmic movement followed the Ca(2+) wave in the same direction and recovered in 25-35 s. These characteristics changed as follows, as Ca(2+) oscillations progressed during the second meiosis up to their cessation at the stage of pronuclei formation ( approximately 3 h after fertilization). (1) The duration of Ca(2+) transients became shorter. (2) The shoulder point shifted to higher levels and the first step occupied most of the rising phase. (3) The rate of [Ca(2+)](i) rise became greater and wave speeds increased up to 80-100 microm/s or more. (4) The transient cytoplasmic movement always resulted from the Ca(2+) wave, although its displacement became smaller. (5) The Ca(2+) wave initiation site was freed from the sperm-fusion or -entry site and eventually localized in the cortex of the vegetal hemisphere. Since the shift of the wave initiation site to the vegetal cortex is observed in fertilized eggs of nemertean worms and ascidians, this might be an evolutionarily conserved feature.  相似文献   

18.
19.
A rise in intracellular free Ca(2+) concentration ([Ca(2+)](i)) is required to activate sperm of all organisms studied. Such elevation of [Ca(2+)](i) can occur either by influx of extracellular Ca(2+) or by release of Ca(2+) from intracellular stores. We have examined these sources of Ca(2+) in sperm from the sea squirt Ascidia ceratodes using mitochondrial translocation to evaluate activation and the Ca(2+)-sensitive dye fura-2 to monitor [Ca(2+)](i) by bulk spectrofluorometry. Sperm activation artificially evoked by incubation in high-pH seawater was inhibited by reducing seawater [Ca(2+)], as well as by the presence of high [K(+)](o) or the Ca channel blockers pimozide, penfluridol, or Ni(2+), but not nifedipine or Co(2+). The accompanying rise in [Ca(2+)](i) was also blocked by pimozide or penfluridol. These results indicate that activation produced by alkaline incubation involves opening of plasmalemmal voltage-dependent Ca channels and Ca(2+) entry to initiate mitochondrial translocation. Incubation in thimerosal or thapsigargin, but not ryanodine (even if combined with caffeine pretreatment), evoked sperm activation. Activation by thimerosal was insensitive to reduced external calcium and to Ca channel blockers. Sperm [Ca(2+)](i) increased upon incubation in high-pH or thimerosal-containing seawater, but only the high-pH-dependent elevation in [Ca(2+)](i) could be inhibited by pimozide or penfluridol. Treatment with the protonophore CCCP indicated that only a small percentage of sperm could release enough Ca(2+) from mitochondria to cause activation. Inositol 1,4,5-trisphosphate (IP(3)) delivered by liposomes or by permeabilization increased sperm activation. Both of these effects were blocked by heparin. We conclude that high external pH induces intracellular alkalization that directly or indirectly activates plasma membrane voltage-dependent Ca channels allowing entry of external Ca(2+) and that thimerosal stimulates release of Ca(2+) from IP(3)-sensitive intracellular stores.  相似文献   

20.
Bradykinin (1 microM) and histamine (100 microM) evoked an initial transient increase and a subsequent sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded human gingival fibroblasts, which may be attributed to Ca(2+) release from intracellular stores and Ca(2+) entry from extracellular sites, respectively. In fibroblasts pretreated with tyrosine kinase inhibitors such as herbimycin A (1 microM) and tyrphostin 47 (20 microM), the sustained level of [Ca(2+)](i) induced by bradykinin and histamine increased, but not the initial peak level. In the absence of external Ca(2+), bradykinin and histamine induced only the transient increase in [Ca(2+)](i), but a subsequent addition of Ca(2+) to the medium resulted in a sustained increase in [Ca(2+)](i) caused by Ca(2+)entry. Thapsigargin, an inhibitor of Ca(2+)-ATPase in inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores, mimicked the effect of bradykinin and histamine. In the fibroblasts pretreated with tyrosine kinase inhibitors, the bradykinin-, histamine- and thapsigargin-induced Ca(2+) entry was clearly enhanced, but not the transient [Ca(2+)](i) increase. Tyrosine phosphatase inhibitor benzylphosphonic acid (200 microM) had no effect on Ca(2+)entry or transient [Ca(2+)](i) increase. These results suggest that tyrosine phosphorylation is involved in Ca(2+) entry in human gingival fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号