首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of tomato, Lycopersicum spp., leaves treated with imidacloprid on probing and settling behavior of Frankliniella fusca (Hinds) and Frankliniella occidentalis (Pergrande) were examined using an electrical penetration graph technique and an intact leaf bioassay. For each experiment, thrips were subjected to nontreated plants and plants treated with either of two rates of imidacloprid: 7.81 and 41.55 microg [(AI)] per plant. F. fusca probed less frequently on plants treated with the high rate of imidacloprid compared with the nontreated plants. The duration of F. fusca noningestion probing waveforms and ingestion was shorter on plants treated with the high rate of imidacloprid compared with that on nontreated plants. In contrast, F. occidentalis probed longer and more frequently on plants treated with either the low or high imidacloprid rates compared with nontreated plants. They also ingested more frequently and for longer durations on plants treated with the high rate compared with nontreated plants. The duration and frequency of noningesting probing waveforms were greater on the imidacloprid-treated plants compared with the nontreated plants. F. occidentalis probed and ingested more frequently and for a longer duration than F. fusca on plants treated with the high rate of imidacloprid. F. fusca ingested more frequently and the duration of ingestion was longer than F. occidentalis in untreated plants. F. fusca and F. occidentalis settling behavior differed within the first 30 min in a choice bioassay. F. fusca preferred settling on leaves of nontreated plants, whereas F. occidentalis showed no preference in an intact leaf choice bioassay.  相似文献   

2.
Host plant effects of tomato, Lycopersicon esculentum Mill., and chickweed, Stellaria media (L.) Vill., foliage infected and uninfected with Tomato spotted wilt virus (family Bunyaviridae, genus Tospovirus, TSWV) on the ovipositional preferences of western flower thrips, Frankliniella occidentalis (Pergande), and tobacco thrips, Frankliniella fusca (Hinds), were investigated for whole plants in the greenhouse. In addition, the preference for leaf disks from the same host plants was investigated under a range of temperatures, 15-30 degrees C at a photoperiod of 12:12 (L:D) h, and at three photoperiods, 6:18, 12:12, and 18:6, at 20 degrees C in no-choice and choice studies conducted in growth chambers. In a choice test, F. fusca oviposited significantly more eggs per whole plant foliage over a 7-d period than F. occidentalis by an average ratio of 3:1 over both tomato and chickweed. The optimum temperature for oviposition of F. occidentalis and F. fusca was 24.5 and 24.9 degrees C, respectively. Both species laid significantly more eggs under the longest daylight hours tested, 18:6, in the choice study. Temperature and photoperiod did not significantly interact in terms of thrips ovipositional preference. Ovipositional preference for chickweed or tomato foliage was different for each thrips species in the choice and no-choice tests. However, both thrips species laid significantly more eggs per square centimeter of leaf area in chickweed than in tomato in the whole plant choice test.  相似文献   

3.
The genetic basis of spinosad resistance was investigated in the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). The resistant strain, selected in the laboratory for spinosad resistance from a pool of thrips populations collected in Almeria (southeastern Spain), showed a very high resistance to spinosad (356,547-fold based on LC50 values) compared with the laboratory susceptible strain. Mortality data from reciprocal crosses of resistant and susceptible thrips indicated that resistance was autosomal and not influenced by maternal effects. Analysis of probit lines from the parental strains and reciprocal crosses showed that resistance was expressed as an almost completely recessive trait. To determine the number of genes involved, a direct test of monogenic inheritance based on the backcrosses suggested that resistance to spinosad was probably controlled by one locus. Another approach, which was based on phenotypic variances, showed that nE, or the minimum number of freely segregating genetic factors for the resistant strain, equaled 0.59.  相似文献   

4.
Frankliniella fusca (Hinds) naturally disperses from winter weeds to crops in spring, causing direct and indirect damage. Field preparation before planting includes use of herbicides or cultivation to kill unwanted vegetation, which adversely affects F. fusca host plants and potentially influences F. fusca dispersal. Common chickweed, Stellaria media (L.), infested with F. fusca, was used as a model to study effects of timing and type of vegetation management on adult dispersal. Infested weeds were caged and F. fusca weekly dispersal was monitored using sticky traps. Weed management treatments performed at an early (14 April-11 May) or late (2 wk after early treatment) date consisted of glyphosate, paraquat, disking, hoeing, or untreated control. Late glyphosate and hoeing treatments resulted in cumulative dispersal statistically similar to or greater than from control plots. Compared with the control, significantly more F. fusca dispersed from the glyphosate and hoeing plots during the 3 wk after treatment. More thrips dispersed from the late paraquat treatment 1 wk post-application than from the control. Dispersal from the disked treatment and early paraquat treatment was similar to that of the control 1- to 3-wk post-treatment. Early treatments resulted in significantly smaller cumulative dispersal than the control in all but one instance. Late disking and paraquat treatments resulted in cumulative F. fusca captures that were statistically similar or less than that in the control. Winter weed management type and timing affect F. fusca dispersal magnitude and duration.  相似文献   

5.
The systemic effects of neem on the western flower thrips, Frankliniella occidentalis (Pergande), were investigated in laboratory trials using green bean, Phaseolus vulgaris L., in arena and microcosm experiments. In arena experiments, systemic effects of neem against western flower thrips larvae on primary bean leaves were observed with maximum corrected mortality of 50.6%. In microcosm experiments using bean seedlings, higher efficacy in the control of western flower thrips were observed with soil applications of neem on a substrate mixture (i.e., Fruhstorfer Erde, Type P, and sand) in a 1:1 ratio (93% corrected mortality) compared with application on the commercial substrate only (76% corrected mortality). However, longer persistence of neem was observed with soil application on the commercial substrate, which showed effects against thrips for up to 6 d after application. In addition to systemic effects observed on all foliage-feeding stages of western flower thrips, mortality on contact and repellent effects were observed on soil-inhabiting stages after soil applications of neem. Finally, bean seedlings grown from seeds pregerminated for 3 d in neem emulsion were also toxic to western flower thrips.  相似文献   

6.
Biochemical mechanisms associated with methiocarb resistance were examined in laboratory-selected and field populations of the western flower thrips, Frankliniella occidentalis (Pergande). Seven populations were examined and they differed in their susceptibility to methiocarb by 30 times. Including the synergists piperonyl butoxide, a cytochrome P-450 monooxygenase inhibitor, or S,S,S-tributylphosphorotrithioate, an esterase inhibitor, in the methiocarb bioassays partially suppressed resistance in the most resistant populations. In vitro assays of general esterase, glutathione S-transferase, and acetylcholinesterase activities showed increased activity in some of the resistant populations and increased activity of the enzymes after methiocarb selection on one of the populations. Assays of acetylcholinesterase sensitivity to inhibition by methiocarb, dichlorvos, and eserine suggested insensitive acetylcholinesterase in two of the resistant populations. These results indicate that methiocarb resistance in F. occidentalis was polyfactorial and involved detoxification and altered target site. None of the biochemical assays showed interpopulation enzymatic differences strongly correlated with the level of methiocarb resistance. The possibilities for developing rapid biochemical diagnostic assays to detect methiocarb resistance in F. occidentalis are discussed.  相似文献   

7.
In North Carolina, Tomato spotted wilt tospovirus (family Bunyaviridae, genus Tospovirus, TSWV) is vectored primarily by the tobacco thrips, Frankliniella fusca (Hinds), and the western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). TSWV overwinters in winter annual weeds from which it is spread to susceptible crops in spring. Because most susceptible crops are destroyed after harvest before winter weeds emerge in the fall, infected summer weeds are thought to be the principal source for spread of TSWV to winter annual weeds in fall. A survey of summer weeds associated with TSWV-susceptible crops in the coastal plain of North Carolina conducted between May and October revealed that relatively few species were commonly infected with TSWV and supported populations of F. fusca or F. occidentalis. F. occidentalis made up > 75% of vector species collected from 15 summer weed species during 2002. The number of F. occidentalis and F. fusca immatures collected from plant samples varied significantly among plant species. Ipomoea purpurea (L.) Roth, Mollugo verticillata L., Cassia obtusifolia L., and Amaranthus palmeri S. Wats supported the largest numbers of immature F. occidentalis. Richardia scabra L., M. verticillata, and Ipomoea hederacea (L.) supported the largest numbers of F. fusca immatures. TSWV was present at 16 of 17 locations, and naturally occurring infections were found in 14 of 29 weed species tested. Five of the TSWV-infected species have not previously been reported as hosts of TSWV (A. palmeri, Solidago altissima L., Ipomoea lacunosa L., I. purpurea, and Phytolacca americana L.). Estimated rates of infection were highest in I. purpurea (6.8%), M. verticillata (5.3%), and I. hederacea (1.9%). When both the incidence of infection by TSWV and the populations of F. occidentalis and F. fusca associated with each weed species are considered, the following summer weed species have the potential to act as significant sources for spread of TSWV to winter annual weeds in fall: I. purpurea, I. hederacea, M. verticillata, A. palmeri, C. obtusifolia, R. scabra, Ambrosia artemisiifolia L., Polygonum pensylvanicum L., and Chenopodium album L.  相似文献   

8.
Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major pest of strawberry, causing substantial yield loss through direct feeding on the flowers and fruit. Insecticides are the main method used for its control; however, F. occidentalis has developed resistance to insecticides from all major chemical classes. Chemical control is not a long-term strategy and integrated pest management is required. This study determined whether F. occidentalis damage could be reduced by host plant resistance or tolerance in three commercial strawberry cultivars (Fragaria X ananassa [Rosaceae]: 'Albion', 'Camarosa', and 'Camino Real'). Determination of resistance or tolerance to F. occidentalis was based on olfactory response, feeding damage, ovipositional preference, and host suitability for reproduction on leaves. F. occidentalis adults preferred to feed on Camarosa; however, if leaves had been fed on previously by conspecifics, there was no difference in feeding preference. Camarosa was the most preferred cultivar for oviposition, and more eggs were laid by F. occidentalis on Camarosa than either Albion or Camino Real. More larvae hatched and adults were reared from Camarosa than either Albion or Camino Real. The percentage of unhatched eggs, larvae, and pupae that died was highest on Camino Real. Survival rate was highest on Camarosa. Egg incubation, prepupation, pupation, and total developmental periods were shortest on Camarosa, but the larval period was longest on Camarosa. Camarosa was the most favorable cultivar for F. occidentalis population growth on leaves.  相似文献   

9.
The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), has become one of the most difficult insects to control in the intensive agriculture of southeastern Spain. However, resistance problems are quite different in two neighboring areas, Murcia and Almeria, with distinct production systems. Thirty-six field populations of western flower thrips from sweet pepper crops were collected in two different dates in Murcia and Almeria in 2005 and 2006. Western flower thrips populations collected were exposed to a diagnostic concentration of spinosad, methiocarb, acrinathrin, and formetanate. The results allowed the recognition of higher levels of resistance in Almeria compared with Murcia throughout the growing season. The mortality at the diagnostic concentration for spinosad (120 ppm) in western flower thrips populations ranged from 34 to 81% in Almeria, and from 73 to 100% in Murcia. The mortalities at the diagnostic concentration to acrinathrin (800 ppm) and formetanate (8000 ppm) were 17-31% in Almeria and 77-100% in Murcia, and 14-41% in Almeria and 48-99% in Murcia, respectively, indicating large geographic variations. Toxicity of methiocarb was higher for western flower thrips populations from both areas. However, mortality at the diagnostic concentration of methiocarb (2000 ppm) varied from 56 to 90% in Almeria, and it was from 94 to 100% in Murcia. The impact of production systems and agricultural practices of each area on the development and stability of insecticide resistance is discussed.  相似文献   

10.
Thrips-transmitted Iris yellow spot virus (IYSV) (Family Bunyaviridae, Genus Tospovirus) affects onion production in the United States and worldwide. The presence of IYSV in Georgia was confirmed in 2003. Two important thrips species that transmit tospoviruses, the onion thrips (Thrips tabaci (Lindeman)) and the tobacco thrips (Frankliniella fusca (Hinds)) are known to infest onion in Georgia. However, T. tabaci is the only confirmed vector of IYSV. Experiments were conducted to test the vector status of F. fusca in comparison with T. tabaci. F. fusca and T. tabaci larvae and adults reared on IYSV-infected hosts were tested with antiserum specific to the nonstructural protein of IYSV through an antigen coated plate ELISA. The detection rates for F. fusca larvae and adults were 4.5 and 5.1%, respectively, and for T. tabaci larvae and adults they were 20.0 and 24.0%, respectively, indicating that both F. fusca and T. tabaci can transmit IYSV. Further, transmission efficiencies of F. fusca and T. tabaci were evaluated by using an indicator host, lisianthus (Eustoma russellianum (Salisbury)). Both F. fusca and T. tabaci transmitted IYSV at 18.3 and 76.6%, respectively. Results confirmed that F. fusca also can transmit IYSV but at a lower efficiency than T. tabaci. To attest if low vector competency of our laboratory-reared F. fusca population affected its IYSV transmission capability, a Tomato spotted wilt virus (Family Bunyaviridae, Genus Tospovirus) transmission experiment was conducted. F. fusca transmitted Tomato spotted wilt virus at a competent rate (90%) suggesting that the transmission efficiency of a competent thrips vector can widely vary between two closely related viruses.  相似文献   

11.
Field tests were conducted during 2001 and 2002 in northeastern North Carolina to evaluate the impact of cultural practices and in-furrow insecticides on the incidence of Tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae, TSWV), which is transmitted to peanut, Arachis hypogaea L., primarily by tobacco thrips, Frankliniella fusca Hinds (Thysanoptera: Thripidae). Treatments included in row plant populations of 7, 13, and 17 plants per meter; the virginia market-type 'NC V-11' and 'Perry'; planting dates of early and late May; and phorate and aldicarb insecticide applied in-furrow. The incidence of plants expressing visual symptoms of spotted wilt was recorded from mid-June through mid-September. Treatment factors that reduced the incidence of symptoms of plants expressing spotted wilt symptoms included establishing higher plant densities, delaying planting from early May until late May, and applying the in-furrow insecticide phorate. Peanut cultivar did not have a consistent, significant effect on the incidence of symptomatic plants in this experiment.  相似文献   

12.
13.
Abstract  Insecticide resistance monitoring using a Potter precision spray tower with discriminating concentration and log dose probability techniques underpins the Australian insecticide management strategy for Frankliniella occidentalis Pergande. Abamectin, acephate, chlorpyrifos, dichlorvos, dimethoate, endosulfan, fipronil, malathion, methamidophos methidathion, methiocarb, methomyl, pyrazophos and spinosad are recommended for use against F. occidentalis but abamectin, methiocarb and pyrazophos are the only chemicals where insecticide resistance has not been detected. Although not registered, chlorfenapyr was effective against F. occidentalis and should be pursued for that purpose. In contrast, chlorpyrifos, dichlorvos and malathion resistance were detected at low to moderate levels throughout the study period putting their sustainable use for F. occidentalis control in doubt . Although it appears that acephate, dimethoate, endosulfan, fipronil, methamidophos, methidathion and spinosad remain effective, some populations contained a small percentage of thrips that survived exposure to a concentration that killed 100% of the susceptible strain. Subsequent laboratory selection of one such population separately with fipronil and spinosad caused an increase in resistance to these insecticides. These products must now be considered at risk. This is the first report of fipronil or spinosad resistance in populations of F. occidentalis.  相似文献   

14.
Shortly after the initial detection of western flower thrips (WFT), Frankiniella occidentalis (Pergande), in Australia during 1993 a resistance management strategy based on the alternation of chemical groups was implemented. This study aimed to verify this strategy by field testing α-cypermethrin against WFT with and without chemical alternation. Up to 114 times α-cypermethrin resistance (at LC50) was detected and resistance increased with and without chemical alternation; however, chemical alternation did significantly reduce numbers of thrips compared with a nonalternation strategy. Resistance has the potential to undermine the sustainable use of those chemicals to which there is no current detectable resistance. Consequently, chemicals with a high frequency and level of resistance against WFT need to be identified through monitoring and quickly eliminated from WFT chemical control recommendations.  相似文献   

15.
A Japanese strain of Frankliniella fusca (Hinds) was reared under 4 temperature and two photoperiodic conditions on leaves of green bean. On the basis of the ratio of fore wing length to head width (RWL) of adult thrips we defined individuals with RWL above 3.7 as macropterous forms and those with RWL below 3.5 as brachypterous forms. Percentages of macropterous individuals among females were 0 % at 18 °C, 10.6 % at 22.5 °C, 21.8 % at 25 °C, and 77.5 % at 27.5 °C, under 15L–9D. The proportion of macropters among females developing under 15L–9D was no different from that among those developing under 10L–14D. These results indicate that photoperiod does not affect wing form, and suggest that the proportion of macropterous females increases with temperature. Although development time from hatching to adult eclosion, adult pre-oviposition period, adult head width, adult longevity, total fecundity, and fecundity schedule were compared between macropterous and brachypterous females developing at 25 °C and 15L–9D, these traits were not significantly different between the wing forms. Males of this experimental strain were all brachypterous.  相似文献   

16.
Abstract  The sensitivity of three reference strains of the western flower thrips Frankliniella occidentalis from Australia, Israel and Turkey was evaluated and their response did not differ significantly and so they are considered typical of susceptible F. occidentalis . Field strains of F. occidentalis from Antalya, Turkey were tested for resistance against five classes of insecticide during the years 2001–2003. Difference in the field strains response to abamectin, endosulfan, malathion and methomyl was low (<3.0-fold) and in many cases not significant. However, all strains were likely resistant to cypermethrin (1.6- to 12.2-fold at LC50 (lethal concentration)). The established agricultural practices and ecosystem patterns in the Antalya province are assumed to contribute to delay in insecticide resistance in F. occidentalis .  相似文献   

17.
Abstract  The study was conducted to characterise the underlying resistance mechanisms responsible for high levels of pyrethroid resistance in Frankliniella occidentalis (Pergande) in Australia. Seven commercially available pyrethroids (acrinathrin, alpha-cypermethrin, bifenthrin, deltamethrin, esfenvalerate, permethrin and tau-fluvalinate) were evaluated against seven F. occidentalis strains collected from ornamentals, fruit and vegetables in three states of Australia. A Potter spray tower was used to test for pyrethroid resistance and all field strains were found to be resistant, with resistance ratios ranging from 15-fold deltamethrin to 1300-fold tau-fluvalinate. The two most resistant strains were further tested for detoxification enzymes that could be involved in resistance. Three synergists, piperonyl butoxide (PBO), diethyl maleate (DEM) and profenofos, which, respectively, inhibit the enzymes cytochrome P-450 monooxygenases, glutathione S -transferases and esterases, were used. The synergism data indicate that multiple mechanisms may be involved in pyrethroid resistance in Australian populations of F. occidentalis . Among the three synergists, PBO considerably reduced pyrethroid resistance in the selected strains compared with DEM and profenofos. The practical implication for PBO use to suppress pyrethroid resistance in F. occidentalis is elaborated.  相似文献   

18.
Abstract  Chemical control of western flower thrips Frankliniella occidentalis requires three consecutive applications of the same pesticide, 3–6 days apart. Initially, pesticides recommended for western flower thrips control were based on established maximum residue limits (MRLs) from previously established use on pests other than F. occidentalis , rather than product efficacy against F. occidentalis . Moreover, MRLs were based on a single application rather than three consecutive sprays. Chemical residues associated with the three-spray strategy were not quantified. Here those residues are quantified and the scope for rate increases is further tested, as laboratory bioassays suggest that some current permit rates may be too low to be effective. At established withholding periods (WHPs), current permit rate applications of abamectin (0.018 g/L) on strawberry and tomato, and methidathion (0.5 g/L) and endosulfan (0.666 g/L) on lettuce produced residues above the current Australian MRL. Results indicated that a higher than the current permit rate for endosulfan (2.0 g/L) could be sustained on cucumber and strawberry at established WHPs, but would require an extension to the current WHP. Similarly, a modest increase in methidathion (1.0 g/L) rate on tomato could be practical, again with a WHP extension. In each instance additional supporting data are required to accurately quantify the proposed WHP extensions.  相似文献   

19.
Cross‐resistance, resistance mechanisms, and mode of inheritance of spinosad resistance were studied in the western flower thrip, Frankliniella occidentalis (Pergande). Spinosad (naturalyte insecticide) showed low cross‐resistance to prothiophos (organophosphorus insecticide) and chlorphenapyr (respiratory inhibitor) showed some cross‐resistance to thiocyclam (nereistoxin). The synergists PBO (piperonyl butoxide), DEM (diethyl maleate), and DEF (s, s, s‐tributyl phosphorotrithioate) did not show any synergism on the toxicity of spinosad in the resistant strain (ICS), indicating that metabolic‐mediated detoxification was not responsible for the spinosad resistance, suggesting that spinosad may reduce sensitivity of the target site: the nicotinic acetylcholine receptor and GABA receptor. Following reciprocal crosses, dose‐response lines and dominance ratios indicated that spinosad resistance was incompletely dominant and there were no maternal effects. The results of backcross showed that spinosad resistance did not fit a single‐gene hypothesis, suggesting that resistance was influenced by several genes.  相似文献   

20.
The effectiveness of inoculative releases of the mirid predator Dicyphus hesperus Knight for control of Frankliniella occidentalis (Pergande) on greenhouse tomatoes was evaluated in terms of suppression of the population densities of F. occidentalis and associated fruit damage in the presence of the predator over two seasonal trials. An inoculative release of one D. hesperus per plant (approximately 0.1:10 predator:prey ratio) at a high F. occidentalis population density (140 thrips per plant) suppressed the thrips population density to a significantly lower level, compared with the nonrelease greenhouse, but not below a thrips level that caused economic fruit damage. As the predator:prey ratio increased to approximately 0.5:10 D. hesperus:F. occidentalis, the mean percentage of the thrips-damaged fruit in the D. hesperus release greenhouse decreased to 1.6%. However, the amount of fruit feeding by D. hesperus was highly correlated to the availability of prey (or predator:prey ratio) under greenhouse conditions. D. hesperus-induced fruit damage occurred when the predator:prey ratio was >1:10 D. hesperus:F. occidentalis. Considering the potential risk of fruit damage by D. hesperus and the need for effective control of F. occidentalis, a 0.5-1:10 D. hesperus:F. occidentalis ratio is recommended when the thrips population density is in the range of 60-150 thrips per plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号