首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How to resolve the SLOSS debate: Lessons from species-diversity models   总被引:1,自引:0,他引:1  
The SLOSS debate - whether a single large reserve will conserve more species than several small - of the 1970s and 1980s never came to a resolution. The first rule of reserve design states that one large reserve will conserve the most species, a rule which has been heavily contested. Empirical data seem to undermine the reliance on general rules, indicating that the best strategy varies from case to case. Modeling has also been deployed in this debate. We may divide the modeling approaches to the SLOSS enigma into dynamic and static approaches. Dynamic approaches, covered by the fields of island equilibrium theory of island biogeography and metapopulation theory, look at immigration, emigration, and extinction. Static approaches, such as the one in this paper, illustrate how several factors affect the number of reserves that will save the most species.This article approaches the effect of different factors by the application of species-diversity models. These models combine species-area curves for two or more reserves, correcting for the species overlap between them. Such models generate several predictions on how different factors affect the optimal number of reserves. The main predictions are: Fewer and larger reserves are favored by increased species overlap between reserves, by faster growth in number of species with reserve area increase, by higher minimum-area requirements, by spatial aggregation and by uneven species abundances. The effect of increased distance between smaller reserves depends on the two counteracting factors: decreased species density caused by isolation (which enhances minimum-area effect) and decreased overlap between isolates. The first decreases the optimal number of reserves; the second increases the optimal number. The effect of total reserve-system area depends both on the shape of the species-area curve and on whether overlap between reserves changes with scale.The approach to modeling presented here has several implications for conservational strategies. It illustrates well how the SLOSS enigma can be reduced to a question of the shape of the species-area curve that is expected or generated from reserves of different sizes and a question of overlap between isolates (or reserves).  相似文献   

2.
Understanding factors that shape biodiversity and species coexistence across scales is of utmost importance in ecology, both theoretically and for conservation policies. Species-area relationships (SARs), measuring how the number of observed species increases upon enlarging the sampled area, constitute a convenient tool for quantifying the spatial structure of biodiversity. While general features of species-area curves are quite universal across ecosystems, some quantitative aspects can change significantly. Several attempts have been made to link these variations to ecological forces. Within the framework of spatially explicit neutral models, here we scrutinize the effect of varying the local population size (i.e. the number of individuals per site) and the level of habitat saturation (allowing for empty sites). We conclude that species-area curves become shallower when the local population size increases, while habitat saturation, unless strongly violated, plays a marginal role. Our findings provide a plausible explanation of why SARs for microorganisms are flatter than those for larger organisms.  相似文献   

3.
Human demography and reserve size predict wildlife extinction in West Africa.   总被引:13,自引:0,他引:13  
Species-area models have become the primary tool used to predict baseline extinction rates for species in isolated habitats, and have influenced conservation and land-use planning worldwide. In particular, these models have been used to predict extinction rates following the loss or fragmentation of natural habitats in the absence of direct human influence on species persistence. Thus, where direct human influences, such as hunting, put added pressure on species in remnant habitat patches, we should expect to observe extinction rates higher than those predicted by simple species-area models. Here, we show that extinction rates for 41 species of large mammals in six nature reserves in West Africa are 14-307 times higher than those predicted by models based on reserve size alone. Human population and reserve size accounted for 98% of the observed variation in extinction rates between reserves. Extinction occurred at higher rates than predicted by species-area models for carnivores, primates and ungulates, and at the highest rates overall near reserve borders. Our results indicate that, where the harvest of wildlife is common, conservation plans should focus on increasing the size of reserves and reducing the rate of hunting.  相似文献   

4.
In this paper, we address the question of what proportion of biodiversity is represented within protected areas. We assessed the effectiveness of different protected area types at multiple scales in representing primate biodiversity in the Brazilian Legal Amazon. We used point locality data and distribution data for primate species within 1°, 0.5°, and 0.25° spatial resolution grids, and computed the area of reserves within each cell. Four different approaches were used – no reserves (A), exclusively strict use reserves (B), strict and sustainable use reserves (C), and strict and sustainable use reserves and indigenous lands (D). We used the complementarity concept to select reserve networks. The proportions of cells that were classified as reserves at a grid resolution of 1° were 37%, 64%, and 88% for approaches B, C and D, respectively. Our comparison of these approaches clearly showed the effect of an increase in area on species representation. Representation was consistently higher at coarser resolutions, indicating the effect of grain size. The high number of irreplaceable cells for selected networks identified based on approach A could be attributed to the use of point locality occurrence data. Although the limited number of point occurrences for some species may have been due to a Wallacean shortfall, in some cases it may also be the result of an actual restricted geographic distribution. The existing reserve system cannot be ignored, as it has an established structure, legal protection status, and societal recognition, and undoubtedly represents important elements of biodiversity. However, we found that strict use reserves (which are exclusively dedicated to biodiversity conservation) did not effectively represent primate species. This finding may be related to historical criteria for selecting reserves based on political, economic, or social motives.  相似文献   

5.
The potential for large-scale biodiversity losses as a result of climate change and human impact presents major challenges for ecology and conservation science. Governments around the world have established national parks and wildlife reserves to help protect biodiversity, but there are few studies on the long-term consequences of this strategy. We use Kenya as a case study to investigate species richness and other attributes of mammal communities in 6 protected areas over the past century. Museum records from African expeditions that comprehensively sampled mammals from these same areas in the early 1900''s provide a baseline for evaluating changes in species richness and community structure over time. We compare species lists assembled from archived specimens (1896–1950) to those of corresponding modern protected areas (1950–2013). Species richness in Kenya was stable or increased at 5 out of 6 sites from historical to modern times. Beta-diversity, in contrast, decreased across all sites. Potential biases such as variable historical vs. modern collection effort and detection of small-bodied, rare, and low-visibility species do not account for the observed results. We attribute the pattern of decreased beta diversity primarily to increased site occupancy by common species across all body size classes. Despite a decrease in land area available to wildlife, our data do not show the extinctions predicted by species-area relationships. Moreover, the results indicate that species-area curves based solely on protected areas could underestimate diversity because they do not account for mammal species whose ranges extend beyond protected area boundaries. We conclude that the 6 protected areas have been effective in preserving species richness in spite of continuing conversion of wild grasslands to cropland, but the overall decrease in beta diversity indicates a decline in the uniqueness of mammal communities that historically characterized Kenya''s varied landscape.  相似文献   

6.
Networks of protected areas are a key component of efforts to conserve biodiversity. However, there are concerns about an uncritical focus on the percentage area of reserves without an assessment of how well formal reserves are actually protecting biodiversity. In response, we completed a spatial analysis of the formal reserve system in the Australian state of Victoria. We quantified how well the reserve system captured a crude surrogate for vegetation communities (viz: Ecological Vegetation Classes) as well as distribution models for an array of threatened forest‐dependent species. We found evidence of a high degree of overlap between areas subject to intensive forestry (clearcutting) operations and the modelled distribution of a suite of forest‐dependent species. A key outcome of our study was that areas around sites subject to past logging as well as new areas proposed for logging under the Timber Release Plan in Victoria had significantly higher values for threatened forest‐dependent species (as determined by habitat distribution models) than areas that had not been logged. We found significant differences in the spatial characteristics of the dedicated reserve systems and informal protected area networks, with the latter featuring much of its area close to a tenure boundary where logging occurs. Our empirical analyses demonstrating the impacts of ongoing logging operations on areas with high environmental suitability for threatened species have important implications. In particular, the current reserve system is inadequate for a suite of forest‐dependent taxa, including critically endangered Leadbeater's Possum (Gymnobelideus leadbeateri) and the vulnerable Greater Glider (Petauroides volans). This suggests a high degree of conflict between areas of high value for conservation and areas targeted for wood production.  相似文献   

7.
It is crucial for biodiversity conservation that protected areas are large and effective enough to support viable populations of their original species. We used a point count distance sampling method to estimate population sizes of a range of bird species in three Atlantic forest protected areas of size 5600, 22,500, and 46,050 ha. Population sizes were generally related to reserve area, although in the mid-sized reserve, there were many rare species reflecting a high degree of habitat heterogeneity. The proportions of forest species having estimated populations >500 ranged from 55% of 210 species in the largest reserve to just 25% of 140 species in the smallest reserve. All forest species in the largest reserves had expected populations >100, but in the small reserve, 28% (38 species) had populations <100 individuals. Atlantic forest endemics were no more or less likely to have small populations than widespread species. There are 79 reserves (>1000 ha) in the Atlantic forest lowlands. However, all but three reserves in the north of the region (Espírito Santo and states north) are smaller than 10,000 ha, and we predict serious levels of local extinction from these reserves. Habitat heterogeneity within reserves may promote species richness within them, but it may also be important in determining species loss over time by suppressing populations of individual species. We suggest that most reserves in the region are so small that homogeneity in the habitat/altitude within them is beneficial for maintenance of their (comparatively small) original species compliment. A lack of protection in the north, continued detrimental human activity inside reserves, and our poor knowledge of how well the reserve system protects individual taxa, are crucial considerations in biodiversity management in the region.  相似文献   

8.
Protected areas are crucial for Amazonian nature conservation. Many Amazonian reserves have been selected systematically to achieve biodiversity representativeness. We review the role natural-scientific understanding has played in reserve selection, and evaluate the theoretical potential of the existing reserves to cover a complete sample of the species diversity of the Amazonian rainforest biome. In total, 108 reserves (604,832 km2) are treated as strictly protected and Amazonian; 87 of these can be seen as systematically selected to sample species diversity (75.3% of total area). Because direct knowledge on all species distributions is unavailable, surrogates have been used to select reserves: direct information on some species distributions (15 reserves, 14.8% of total area); species distribution patterns predicted on the basis of conceptual models, mainly the Pleistocene refuge hypothesis, (5/10.3%); environmental units (46/27.3%); or a combination of distribution patterns and environmental units (21/22.9%). None of these surrogates are reliable: direct information on species distributions is inadequate; the Pleistocene refuge hypothesis is highly controversial; and environmental classifications do not capture all relevant ecological variation, and their relevance for species distribution patterns is undocumented. Hence, Amazonian reserves cannot be safely assumed to capture all Amazonian species. To improve the situation, transparency and an active dialogue with the scientific community should be integral to conservation planning. We suggest that the best currently available approach for sampling Amazonian species diversity in reserve selection is to simultaneously inventory indicator plant species and climatic and geological conditions, and to combine field studies with remote sensing.  相似文献   

9.
The species-area relationship is one of the most important topic in the study of species diversity, conservation biology and landscape ecology. The species-area relationship curves describe the increase of species number with increasing area, and have been modeled by various equations. In this paper, we used detailed data from six 1-ha subtropical forest communities to fit three species-area relationship models. The coefficient of determination and F ratio of ANOVA showed all the three models fitted well to the species-area relationship data in the subtropical communities, with the logarithm model performing better than the other two models. We also used the three species-abundance distributions, namely the lognormal, logcauchy and logseries model, to fit them to the species-abundance data of six communities. In this case, the logcauchy model had the better fit based on the coefficient of determination. Our research reveals that the rare species always exist in the six communities, corroborating the neutral theory of Hubbell. Furthermore, we explained why all species-abundance figures appeared to be left-side truncated. This was due to subtropical forests have high diversity, and their large species number includes many rare species.  相似文献   

10.
11.
我国东北三省自然保护区物种保护价值评估   总被引:2,自引:1,他引:2  
樊简  彭杨靖  邢韶华  崔国发 《生态学报》2018,38(18):6473-6483
自然保护区作为保护生物多样性最主要的手段之一,得到了世界各国的重视。如何科学客观地评价自然保护区的保护价值,并依据保护价值对其进行分类管理是当前我国自然保护区建设与管理的重要课题之一。以我国东北地区40个国家级自然保护区为研究对象,分别对其物种多样性保护价值和遗传种质资源保护价值进行了评估。通过选取物种的濒危性、特有性和保护等级等指标来计算野生动植物的多样性保护价值;选取分类独特性、近缘程度和濒危性等指标来计算遗传种质资源保护价值,进而计算出各自然保护区的综合物种保护价值。研究结果显示:该评价方法能够很好的反映自然保护区生物多样性及其各个层次和类群的保护价值,能够较准确地识别其物种保护优先性。不同自然保护区其保护价值存在一定差异;同一自然保护区中野生动物与植物之间的物种多样性保护价值没有显著差异,但其野生动物与植物之间的遗传种质资源保护价值存在一定差异性;绝大多数自然保护区其植物遗传种质资源保护价值大于动物遗传种质资源保护价值;虽同为国家级自然保护区,其综合物种多样性保护价值差异很大。吉林长白山国家级自然保护区、吉林珲春东北虎国家级自然保护区、吉林松花江三湖国家级自然保护区的综合保护价值显著高于同类型的其他自然保护区,而辽宁章古台国家级自然保护区、黑龙江双河国家级自然保护区和黑龙江三环泡国家级自然保护区的综合物种保护价值较低,不同类型自然保护区之间其综合保护价值则没有明显差异。该评价方法能较好地进行自然保护区物种保护价值评价,并用于进行自然保护区之间的比较,并不会因自然保护区所处生境、所分布物种不同而产生评价结果上的偏差;该方法在对自然保护区遗传种质资源部分的计算方面需要进一步完善;总体上来说该评价方法不会因自然保护区类型的不同产生差异;今后在对东北地区自然保护区管理分类研究中可将此评价结果作为参考,并作为评价该地区自然保护区能否晋升为国家级自然保护区的辅助工具。这在一定程度上减少了人为主观性,具有较大可行性。  相似文献   

12.
基于ZONATION的岷山山系多物种保护规划   总被引:1,自引:0,他引:1  
肖静  崔莉  李俊清 《生态学报》2016,36(2):420-429
空间布局不尽合理是我国的自然保护区发展面临的问题之一,优化现有的自然保护区体系是在资源有限的情况下实现自然保护区的保护效益最大化的最佳途径。以岷山地区为主要研究区域,以25种珍稀濒危物种为主要研究对象,通过MAXENT与ZONATION模型模拟,鉴别出岷山地区珍稀濒危物种保护优先区,并提出了自然保护区空间选址的优化方案。研究结果表明,(1)在物种出现点记录较少的情况下,MAXENT模型依然能够比较准确地预测出物种的分布状况;(2)目前建立的保护区对25个物种的平均保护比例为51.8%;(3)通过ZONATION鉴定的优先区总面积为19958.7 km~2,岷山地区现有的29个自然保护区只保护了目标优先区的47.1%,九寨沟中部与南部,平武北部,平武与北川的交界处,北川西北部等地都存在保护空缺。建议在保护空缺的6个地方新建或扩建自然保护区,并在规划时考虑这些区域内部的优先次序。新提出的保护体系能将物种栖息地的保护比例提高至77.9%。研究结果对于岷山及全国其他生物多样性保护关键地区保护体系的规划都具有重要的借鉴意义。  相似文献   

13.
Spatial patterns of phylogenetic diversity   总被引:1,自引:0,他引:1  
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas.  相似文献   

14.
Bitahai Nature Reserve is located in Northwest Yunnan and is the highest elevation and the highest latitude wetland nature reserve in Yunnan Province. Bitahai Nature Reserve is a typical wetland nature reserve in very low latitude and high elevation with large areas of coniferous forest around the alpine till lakes, wetland and water area ecosystem while compared with natural reserves distributed same latitude in the world. The area of the reserve distribution is the key area of Transverse Mountain Region. It was a refuge for plant and wildlife because Transverse Mountains were not covered by ice in the Tertiary. And the area is now regarded as a center of forming new species and preserving ancient species. Species biodiversity is high and the distribution of some endemic animals and plants are limited in Transverse Mountains area. In the nature reserve, there are many first and second grade protected plants and animals listed in Lists of China National Priority Protection Fauna and Flora. All of these are precious materials of genetic diversity. The diversities of the plant community and vegetation contribute to ecosystem diversity. Thus, Bitahai Nature Reserve holds with high conservation value. However, its biodiversity is threatened by different factors and its conservation should be paid great attention.  相似文献   

15.
The Klamath‐Siskiyou forests of northern California and southern Oregon are recognized as an area of globally outstanding biological distinctiveness. When evaluated at a national or global level, this region is often, necessarily, considered to be uniformly diverse. Due to large variation in biotic and abiotic variables throughout this region, however, it is unlikely that biological diversity is uniformly distributed. Furthermore, land management decisions nearly always occur at spatial scales smaller than this entire region. Therefore, we used field data from a random sampling design to map the distribution of local and regional richness of terrestrial molluscs and salamanders within northern California's portion of the Klamath‐Siskiyou region. We also evaluated the protection afforded by reserves established for varying reasons (e.g. for inspiration and recreation for people vs. species conservation) to hotspots of species richness and species representation of these taxa. No existing reserves were created with these taxa in mind, yet it was assumed that reserves established largely around considerations for the northern spotted owl (Strix occidentalis caurina) would afford adequate protection for many lesser‐known species. Species of terrestrial molluscs and salamanders share two general features: (1) they have extremely low vagility, and (2) they are often associated with moist, cool microclimates. Existing reserves disproportionately included areas of hotspots of species richness for both taxa, when hotspots included the richest c. 25% of the area, whereas non‐reserved lands contained greater than expected areas with lower species richness. However, when a more strict definition of hotspot was used (i.e. the richest c.10% of areas), local hotspots for both taxa were not disproportionately found in reserves. Reserves set aside largely for human aesthetics and recreation and those set aside for biodiversity both contributed to the protection of areas with high (greatest 25%) species richness. Existing biodiversity reserves represented 68% of mollusc species and 73% of salamander species, corresponding to the 99th and 93rd percentiles, respectively, of species representation achieved by simulating a random distribution of the same total area of reservation. Cumulatively, however, reserves set aside for inspiration and biodiversity represented 83% of mollusc species and 91% of salamander species. The existing reserves provide conservation value for terrestrial molluscs and salamanders. This reserve network, however, should not be considered optimal for either taxa.  相似文献   

16.
The primary approach used to conserve tropical biodiversity is in the establishment of protected areas. However, many tropical nature reserves are performing poorly and interventions in the broader landscape may be essential for conserving biodiversity both within reserves and at large. Between October 2010 and 2012, we conducted bird surveys in and around a recently established nature reserve in Xishuangbanna, China. We constructed a checklist of observed species, previously recorded species, and species inferred to have occurred in the area from their distributions and habitat requirements. In addition, we assessed variation in community composition and habitat specificity at a landscape-scale. Despite the fact that the landscape supports a large area of natural forest habitat (~50,000 ha), we estimate that >40% of the bird fauna has been extirpated and abundant evidence suggests hunting is the primary cause. A large proportion (52%) of the bigger birds (>20 cm) were extirpated and for large birds there was a U-shaped relationship between habitat breadth and extirpation probability. Habitat specificity was low and bird communities were dominated by widespread species of limited conservation concern. We question whether extending tropical protected area networks will deliver desired conservation gains, unless much greater effort is channeled into addressing the hunting problem both within existing protected areas and in the broader landscape.  相似文献   

17.
Southern Africa's subtropical forest biome, though small and highly fragmented, supports much of the region's biodiversity. With limited resources available for conservation and the exploitative use of forest escalating, identifying a network of priority forest reserves is important. We examine the distribution of forest birds, butterflies and mammals in KwaZulu-Natal, South Africa. Using an iterative algorithm we explore the efficiency of existing protected areas, species richness and rarity hotspots, prime forest sites (selected by forest area) and complementary networks as alternative approaches to priority reserve selection, as well as the potential use of indicator taxa. Existing protected areas represent 98% of species but are relatively inefficient in terms of area. Alternative selection criteria represent a high proportion of species (86–92%) and provide efficient bases for developing fully representative reserve networks. All species are represented within a network of 22 complementary quarter degree cells. This network includes several larger forests and existing protected areas and is recommended for priority conservation. Complementary networks identified separately for birds, butterflies and mammals overlap little, but each represents a high proportion of the remaining taxa, supporting their potential as representative 'indicator' taxa. The evolutionary history of the three main forest types in KwaZulu-Natal explains observed spatial patterns of alternative reserve networks. Priority areas are concentrated in scarp and coastal forest belts, regions of comparatively recent evolutionary activity with high species richness. Afromontane forest is older and less diverse, but its inclusion in any reserve network is necessary for the full representation of forest diversity.  相似文献   

18.
It has been proposed that established models and theories developed in classical ecology could be employed to greatly improve the optimization of wastewater treatment plants (WWTP) by placing the microbiological component onto a model-predictive basis. In particular, this could be achieved by better understanding bacterial community assembly and development. The species-area relationship is one of the oldest biological laws and has been used to describe spatial diversity patterns in contiguous habitats and on islands. In the current study, bacterial communities in seven membrane bioreactors (MBR), of increasing size, located across the UK were sampled. A significant linear relationship between bacterial taxa richness and reactor size was observed and was similar to classical species-area relationships of larger organisms colonizing oceanic islands. Rank-abundance plots revealed a gradient of greater evenness in community structure as MBR volume increased. Application of the Raup and Crick probability-based similarity index indicated a strong role for dispersal in MBR colonization and community structure. Our findings demonstrate that the MBR sampled behaved like islands with respect to bacterial colonization in accordance with the theory of island biogeography. In addition this study provides further evidence that biodiversity at the bacterial level is more similar to that of animals and plants than previously postulated.  相似文献   

19.
The expected number of species occurring in different numbers of reserves of the same total area is examined on different assumptions of the spatial distribution and the probability of extinction. The advantage of one large reserve or several smaller ones of equal total area depends on the spatial distributions of species and the stage after the establishement of reserves. In general, several smaller reserves maintain more species immediately after the establishments unless the spatial distribution are uniform or random, whereas one large reserve excels several smaller ones after some rare species have gone extinct unless the spatial distributions are strongly contagious. Since the extinction of rare species must be facilitated as the size of each reserve reduces, the area of a reserve should be larger than the critical area that ensures the persistence of the species. Hence it is concluded that one or a few large reserves are a better strategy in order to maintain the species diversity.  相似文献   

20.
Understanding patterns of biodiversity in deep sea systems is increasingly important because human activities are extending further into these areas. However, obtaining data is difficult, limiting the ability of science to inform management decisions. We have used three different methods of quantifying biodiversity to describe patterns of biodiversity in an area that includes two marine reserves in deep water off southern Australia. We used biological data collected during a recent survey, combined with extensive physical data to model, predict and map three different attributes of biodiversity: distributions of common species, beta diversity and rank abundance distributions (RAD). The distribution of each of eight common species was unique, although all the species respond to a depth-correlated physical gradient. Changes in composition (beta diversity) were large, even between sites with very similar environmental conditions. Composition at any one site was highly uncertain, and the suite of species changed dramatically both across and down slope. In contrast, the distributions of the RAD components of biodiversity (community abundance, richness, and evenness) were relatively smooth across the study area, suggesting that assemblage structure (i.e. the distribution of abundances of species) is limited, irrespective of species composition. Seamounts had similar biodiversity based on metrics of species presence, beta diversity, total abundance, richness and evenness to the adjacent continental slope in the same depth ranges. These analyses suggest that conservation objectives need to clearly identify which aspects of biodiversity are valued, and employ an appropriate suite of methods to address these aspects, to ensure that conservation goals are met.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号