首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physically intuitive and mathematically easily handled formula is presented for calculating the low-frequency vibrations of helical structures in protein molecules. alpha-Chymotrypsin is taken as an example, and the calculated result shows precise agreement with observations of the low-frequency Raman spectra. As reflected in the formula, this kind of low frequency is very sensitive to the conformation of a biomacromolecule, and can therefore serve as a vehicle to investigate the mechanism of action of a biomacromolecule from the viewpoint of dynamics. On this basis a feasible experiment is suggested by which one can examine the relationship between a presumed mode of low-frequency vibration in a biomacromolecule and its activity.  相似文献   

2.
Low-frequency vibrations of DNA molecules.   总被引:1,自引:0,他引:1  
A model for calculating the low-frequency modes in DNA molecules is presented. The present model is associated with the 'breathing' of a DNA molecule as well as its complementary hydrogen bonds. The calculated results show excellent agreement with the observed low-frequency wavenumber (30 cm-1). Consequently, such an internal motion as reflected in the proposed model might be the origin of the observed low-frequency vibration in DNA molecules. This is helpful for investigating the relevant biological functions, which so far have been discussed by many scientists.  相似文献   

3.
The beta-barrel membrane protein is found in the outer membranes of bacteria, mitochondria and chloroplasts. Approximately 2-3% of the genes in Gram-negative bacterial genomes encode beta-barrels. Whereas there are fewer than 20 known three-dimensional beta-barrel structures, genomic databases currently contain thousands of beta-barrels belonging to dozens of families. New research is revealing the variety of beta-barrel structures and the variety of functions performed by these versatile proteins.  相似文献   

4.
5.
K Yapa  D L Weaver  M Karplus 《Proteins》1992,12(3):237-265
A simplified model of a polypeptide chain is used to study the dynamics of the beta-sheet-coil transition. Each amino acid residue is treated as a single quasiparticle in an effective potential that approximates the potential of mean force in solution. The model is used to study the equilibrium and dynamic aspects of the sheet-coil transition. Systems studied include ones with both strands free to move (two-strand sheet), and ones with either strand fixed in position (multistrand sheet). The equilibrium properties examined include sheet-coil equilibrium constants and their dependence on chain position. Dynamic properties are investigated by a stochastic simulation of the Brownian motion of the chain in its solvent surroundings. Time histories of the dihedral angles and residue-residue cross-strand distances are used to study the behavior of the sheet structure. Auto- and cross-correlation functions are calculated from the time histories with relaxation times of tens to hundreds of picoseconds. Sheet-coil rate constants of tens of ns-1 were found for the fixed strand cases.  相似文献   

6.
The redesign of biological nanopores is focused on bacterial outer membrane proteins and pore-forming toxins, because their robust β-barrel structure makes them the best choice for developing stochastic biosensing elements. Using membrane protein engineering and single-channel electrical recordings, we explored the ferric hydroxamate uptake component A (FhuA), a monomeric 22-stranded β-barrel protein from the outer membrane of Escherichia coli. FhuA has a luminal cross-section of 3.1 × 4.4 nm and is filled by a globular N-terminal cork domain. Various redesigned FhuA proteins were investigated, including single, double, and multiple deletions of the large extracellular loops and the cork domain. We identified four large extracellular loops that partially occlude the lumen when the cork domain is removed. The newly engineered protein, FhuAΔC/Δ4L, was the result of a removal of almost one-third of the total number of amino acids of the wild-type FhuA (WT-FhuA) protein. This extensive protein engineering encompassed the entire cork domain and four extracellular loops. Remarkably, FhuAΔC/Δ4L forms a functional open pore in planar lipid bilayers, with a measured unitary conductance of ~4.8 nanosiemens, which is much greater than the values recorded previously with other engineered FhuA protein channels. There are numerous advantages and prospects of using such an engineered outer membrane protein not only in fundamental studies of membrane protein folding and design, and the mechanisms of ion conductance and gating, but also in more applicative areas of stochastic single-molecule sensing of proteins and nucleic acids.  相似文献   

7.
The conformations of the symmetrical cystine peptides Boc-Cys-(Val)n-Trp-OMe Boc-Cys-(Val)n-Trp-OMe (n = 1, 1; 2, 2; 3, 3) have been examined in solution, in order to evaluate the use of disulfide crosslinks in stabilizing extended beta-strand conformations in acyclic sequences. NMR studies in (CD3)2SO provide evidence for the solvent inaccessible nature of the Val(2) NH group in peptides 1 and 2. JHNCH alpha H values are indicative of extended structures. Sequential interresidue nuclear Overhauser effects support the population of beta-strand structures in both peptides. The fluorescence quantum yield of tryptophan determined in methanol follows the order 2 greater than 1 approximately 3. Reduction of the disulfides with NaBH4 results in large enhancements of emission intensity, with the changes following the order 1 greater than 3 much greater than 2. The order of quenching is a function of the disposition of the indole and disulfide sidechains in an extended beta-sheet structure.  相似文献   

8.
Protein motions, ranging from molecular flexibility to large-scale conformational change, play an essential role in many biochemical processes. Despite the explosion in our knowledge of structural and functional data, our understanding of protein movement is still very limited. In previous work, we developed and validated a motion planning based method for mapping protein folding pathways from unstructured conformations to the native state. In this paper, we propose a novel method based on rigidity theory to sample conformation space more effectively, and we describe extensions of our framework to automate the process and to map transitions between specified conformations. Our results show that these additions both improve the accuracy of our maps and enable us to study a broader range of motions for larger proteins. For example, we show that rigidity-based sampling results in maps that capture subtle folding differences between protein G and its mutants, NuG1 and NuG2, and we illustrate how our technique can be used to study large-scale conformational changes in calmodulin, a 148 residue signaling protein known to undergo conformational changes when binding to Ca(2+). Finally, we announce our web-based protein folding server which includes a publicly available archive of protein motions: (http://parasol.tamu.edu/foldingserver/).  相似文献   

9.
Here we show that the locations of molecular hinges in protein structures fall between building block elements. Building blocks are fragments of the protein chain which constitute local minima. These elements fold first. In the next step they associate through a combinatorial assembly process. While chain-linked building blocks may be expected to trial-associate first, if unstable, alternate more stable associations will take place. Hence, we would expect that molecular hinges will be at such inter-building block locations, or at the less stable, unassigned regions. On the other hand, hinge-bending motions are well known to be critical for protein function. Hence, protein folding and protein function are evolutionarily related. Further, the pathways through which proteins attain their three dimensional folds are determined by protein topology. However, at the same time the locations of the hinges, and hinge-bending motions are also an outcome of protein topology. Thus, protein folding and function appear coupled, and relate to protein topology. Here we provide some results illustrating such a relationship.  相似文献   

10.
Contacts with neighboring molecules in protein crystals inevitably restrict the internal motions of intrinsically flexible proteins. The resultant clear electron densities permit model building, as crystallographic snapshot structures. Although these still images are informative, they could provide biased pictures of the protein motions. If the mobile parts are located at a site lacking direct contacts in rationally designed crystals, then the amplitude of the movements can be experimentally analyzed. We propose a fusion protein method, to create crystal contact‐free space (CCFS) in protein crystals and to place the mobile parts in the CCFS. Conventional model building fails when large amplitude motions exist. In this study, the mobile parts appear as smeared electron densities in the CCFS, by suitable processing of the X‐ray diffraction data. We applied the CCFS method to a highly mobile presequence peptide bound to the mitochondrial import receptor, Tom20, and a catalytically relevant flexible segment in the oligosaccharyltransferase, AglB. These two examples demonstrated the general applicability of the CCFS method to the analysis of the spatial distribution of motions within protein molecules.  相似文献   

11.
Normal mode analysis using the elastic network model has provided characteristics and directions of the low-frequency large domain motions of horse liver alcohol dehydrogenase. Three normal modes (mode 1, mode 7, and mode 8) were identified as representative domain motions that may promote the onset of Near Attack Conformers or facilitate the product to be released. The pattern of the atomic displacement for some key residues (such as Val292 and Val203) revealed in this study is in line with experimental structural and kinetic studies and theoretical simulations.  相似文献   

12.
Structure and assembly of beta-barrel membrane proteins.   总被引:5,自引:0,他引:5  
  相似文献   

13.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

14.
Dynamic Monte Carlo studies have been performed on various diamond lattice models of β-proteins. Unlike previous work, no bias toward the native state is introduced; instead, the protein is allowed to freely hunt through all of phase space to find the equilibrium conformation. Thus, these systems may aid in the elucidation of the rules governing protein folding from a given primary sequence; in particular, the interplay of short- vs long-range interaction can be explored. Three distinct models (A? C) were examined. In model A, in addition to the preference for trans (t) over gauche states (g+ and g?) (thereby perhaps favoring β-sheet formation), attractive interactions are allowed between all nonbonded, nearest neighbor pairs of segments. If the molecules possess a relatively large fraction of t states in the denatured form, on cooling spontaneous collapse to a well-defined β-barrel is observed. Unfortunately, in model A the denatured state exhibits too much secondary structure to correctly model the globular protein collapse transition. Thus in models B and C, the local stiffness is reduced. In model B, in the absence of long-range interactions, t and g states are equally weighted, and cooperativity is introduced by favoring formation of adjacent pairs of nonbonded (but not necessarily parallel) t states. While the denatured state of these systems behaves like a random coil, their native globular structure is poorly defined. Model C retains the cooperativity of model B but allows for a slight preference of t over g states in the short-range interactions. Here, the denatured state is indistinguishable from a random coil, and the globular state is a well-defined β-barrel. Over a range of chain lengths, the collapse is well represented by an all-or-none model. Hence, model C possesses the essential qualitative features observed in real globular proteins. These studies strongly suggest that the uniqueness of the globular conformation requires some residual secondary structure to be present in the denatured state.  相似文献   

15.
Identification of low-frequency modes in protein molecules.   总被引:1,自引:0,他引:1       下载免费PDF全文
It is demonstrated that the observed low-frequency motions with wave numbers of 22 cm-1 and 25 cm-1 for insulin and lysozyme respectively originate from the accordion-like motions of the principal helices therein. The calculated results based on such a model are in good agreement with the observed values. During calculations the role of the internal microenvironment upon the low-frequency motion is naturally revealed, so as to elucidate as well why this kind of low-frequency motion is so sensitive to the conformations of proteins observed.  相似文献   

16.
In this study, we were concerned with the structural role of the surface-exposed extracellular loops of the N-terminal transmembrane (TM) domain of OmpA. A variant of the TM domain of outer membrane protein A (OmpA) with all four such loops shortened, which we call the beta-barrel platform (BBP), was successfully refolded. This indicates that the removed parts of the surface-exposed loops indeed do not contain amino acid sequences critical for this membrane protein's refolding in vitro. BBP has the potential to be used as a template beta-barrel membrane protein structure for the development of novel functions, although our results also highlight the potential difficulties that can arise when functionality is being engineered into the loop regions of membrane proteins. We have used solution nuclear magnetic resonance spectroscopy to determine the global fold of BBP+EF, BBP with a metal ion-binding EF-hand inserted in one of the shortened loops. BBP and BBP+EF in dihexanoylphosphatidylcholine micelles are eight-stranded antiparallel beta-barrels, and BBP represents the smallest beta-structured integral membrane protein known to date.  相似文献   

17.
Standard conformations of polypeptide chains folded into beta-alpha-hairpins are considered in the paper. It is shown that there is a limited number of standard beta-alpha-hairpins having relatively short connections in the proteins and each beta-alpha-hairpin has a strictly definite order of hydrophobic, hydrophilic and glycine residues in the amino acid sequence coding for it.  相似文献   

18.
19.
A fundamental understanding of protein stability and the mechanism of denaturant action must ultimately rest on detailed knowledge about the structure, solvation, and energetics of the denatured state. Here, we use (17)O and (2)H magnetic relaxation dispersion (MRD) to study urea-induced denaturation of intestinal fatty acid-binding protein (I-FABP). MRD is among the few methods that can provide molecular-level information about protein solvation in native as well as denatured states, and it is used here to simultaneously monitor the interactions of urea and water with the unfolding protein. Whereas CD shows an apparently two-state transition, MRD reveals a more complex process involving at least two intermediates. At least one water molecule binds persistently (with residence time >10 nsec) to the protein even in 7.5 M urea, where the large internal binding cavity is disrupted and CD indicates a fully denatured protein. This may be the water molecule buried near the small hydrophobic folding core at the D-E turn in the native protein. The MRD data also provide insights about transient (residence time <1 nsec) interactions of urea and water with the native and denatured protein. In the denatured state, both water and urea rotation is much more retarded than for a fully solvated polypeptide. The MRD results support a picture of the denatured state where solvent penetrates relatively compact clusters of polypeptide segments.  相似文献   

20.
A β-sheet conformation is predicted at the N-terminal of β chains in sickle cell hemoglobin (Hb S) as a result of the β6 Glu → Val mutation. Since Glu is the weakest and Val is the strongest β-sheet former in the predictive method of Chou and Fasman [Biochemistry 13, 211, 222 (1974)], such a substitution greatly increases the β-sheet potential in the β 1–6 region. The similarity in the concentration and temperature dependence of Hb S gelation to β-sheet formation in polyamino acids suggest that a common aggregation mechanism may be involved. Conditions to cause a β → α trans-formation at the β 1–6 region of Hb S is discussed relative to the treatment of sickle cell disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号