首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many genes have been identified that are specifically expressed in multiple types of stem cells in their undifferentiated state. It is generally assumed that at least some of these putative "stemness" genes are involved in maintaining properties that are common to all stem cells. We compared gene expression profiles between undifferentiated and differentiated embryonic stem cells (ESCs) using DNA microarrays. We identified several genes with much greater signal in undifferentiated ESCs than in their differentiated derivatives, among them the putative stemness gene encoding junctional adhesion molecule B (Jam-B gene). However, in spite of the specific expression in undifferentiated ESCs, Jam-B mutant ESCs had normal morphology and pluripotency. Furthermore, Jam-B homozygous mutant mice are fertile and have no overt developmental defects. Moreover, we found that neural and hematopoietic stem cells recovered from Jam-B mutant mice are not impaired in their ability to self-renew and differentiate. These results demonstrate that Jam-B is dispensable for normal mouse development and stem cell identity in embryonic, neural, and hematopoietic stem cells.  相似文献   

2.
Mouse embryonic fibroblasts (MEFs) are the most commonly used feeder cells for pluripotent stem cells. However, autogeneic feeder (AF) cells have several advantages such as no xenogeneic risks and reduced costs. In this report, we demonstrate that common marmoset embryonic stem (cmES) cells can be maintained on common marmoset AF (cmAF) cells. These cmES cells were maintained on cmAF cells for 6 months, retaining their morphology, normal karyotype, and expression patterns for the pluripotent markers Oct-3/4, Nanog, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, as well as their ability to differentiate into cardiac and neural cells. Antibody array analysis revealed equivalent protein expression profiles between cmES cells maintained on cmAF cells and MEFs. In addition, similarly prepared human embryonic stem (hES) and induced pluripotent stem (hiPS) cell-derived AF cells supported the growth of and maintained the morphology and pluripotent marker expressions of hES and hiPS cells, respectively. DNA microarray analysis revealed that these hES and hiPS cells had mRNA expression profiles similar to those of hES and hiPS cells maintained on MEFs, respectively. Taken together, these findings imply that AF cells can replace MEFs in the routine maintenance of primate pluripotent stem cells.  相似文献   

3.
Infection of 18-day embryonic bursal lymphocytes with a v-myc-containing retrovirus leads directly to a polyclonal proliferation of surface immunoglobulin-positive (slg+) cells in the bursa of Fabricius detected four weeks after hatching. These v-myc-expressing bursal cells repopulate the follicles of chemically ablated bursae more efficiently than total normal 18-day embryonic bursal cells. In contrast, comparable normal bursal cells lose the ability to repopulate follicles by four weeks. Bursal lymphocytes expressing either a retroviral v-myc or a c-myc gene deregulated by adjacent retroviral integration retain the ability of embryonic bursal lymphocytes to diversify their immunoglobulin light chain genes. These results suggest that retroviral deregulation of myc expression during avian B cell development induces outgrowth of a population of cells with the cardinal phenotypic characteristics of bursal stem cells.  相似文献   

4.
In vitro and in vivo characterization of neural stem cells   总被引:9,自引:0,他引:9  
Neural stem cells are defined as clonogenic cells with self-renewal capacity and the ability to generate all neural lineages (multipotentiality). Cells with these characteristics have been isolated from the embryonic and adult central nervous system. Under specific conditions, these cells can differentiate into neurons, glia, and non-neural cell types, or proliferate in long-term cultures as cell clusters termed "neurospheres". These cultures represent a useful model for neurodevelopmental studies and a potential cell source for cell replacement therapy. Because no specific markers are available to unequivocally identify neural stem cells, their functional characteristics (self-renewal and multipotentiality) provide the main features for their identification. Here, we review the experimental and ultrastructural studies aimed at identifying the morphological characteristics and the antigenic markers of neural stem cells for their in vitro and in vivo identification.  相似文献   

5.
Embryonic chickens were rendered immunodeficient by in ovo injection of homologous IgM on the 10th embryonic day. The immunodeficient embryos were intravenously given lymphoid cells taken from normal embryonic bursa, spleen or thymus on the 15th embryonic day. Gain of splenic or bursal weight, natural antibodies to sheep red blood cells (SRBC), frequencies of rosette forming cells (RFC) binding to SRBC or dinitrophenyl-SRBC (DNP-SRBC) and of immunoglobulin bearing cells (IBC) in the bursa and the spleen were investigated to assess the effect of transferred cells during the embryonic stage. Transferred bursal and splenic cells showed an ability to restore the frequency of RFC or IBC in the recipients. However, reversion from the immunodeficient state was not observed in the thymic cell transfer. These findings suggested that the cells derived from embryonic bursa and spleen contained stem cells which developed into RFC and also into precursors of IBC.  相似文献   

6.
The journey of developing hematopoietic stem cells   总被引:6,自引:0,他引:6  
Hematopoietic stem cells (HSCs) develop during embryogenesis in a complex process that involves multiple anatomical sites. Once HSC precursors have been specified from mesoderm, they have to mature into functional HSCs and undergo self-renewing divisions to generate a pool of HSCs. During this process, developing HSCs migrate through various embryonic niches, which provide signals for their establishment and the conservation of their self-renewal ability. These processes have to be recapitulated to generate HSCs from embryonic stem cells. Elucidating the interactions between developing HSCs and their niches should facilitate the generation and expansion of HSCs in vitro to exploit their clinical potential.  相似文献   

7.
8.
Stem cell: balancing aging and cancer   总被引:5,自引:0,他引:5  
Stem cells are defined by their self-renewing capacity and the ability to differentiate into one or more cell types. Stem cells can be divided, depending on their origin, into embryonic or adult. Embryonic stem cells derive from early stage embryos and can give rise to cells from all three germ layers. Adult stem cells, first identified in hematopoietic tissue, reside in a variety of adult tissues. Under normal physiologic conditions, adult stem cells are capable of differentiating into the limited cell types that comprise the particular tissue or organ. Adult stem cells are responsible for tissue renewal and exhaustion of their replicative capacity may contribute to tissue aging. Loss of unlimited proliferative capacity in some of the adult stem cells and/or their progenitors may have involved the evolutionary trade-off: senescence prevents cancer but may promote aging. Embryonic stem cells exhibit unlimited self-renewal capacity due to the expression of telomerase. Although they possess some cancer cell characteristics, embryonic stem cells exhibit a remarkable resistance to genomic instability and malignant transformation. Understanding the tumor suppressive mechanisms employed by embryonic stem cells may contribute to the development of novel cancer treatments and safe cell-based therapies for age-related diseases.  相似文献   

9.
Three erythrocyte populations (E, EA, A) were characterized during normal chick development by presence on cells of the embryonic (E) or adult (A) antigen or both (EA). Embryonic and adult stem cells were grafted into irradiated animals in order to distinguish the respective influence of stem cell origin and physiological conditions in the production of antigens. Adult marrow stem cells produce A erythrocytes. Embryonic stem cells (from 6- or 11-day-old embryo yolk sac) give rise first to E, then to EA populations. These results confirm the existence of adult stem cells with their own properties. It was not possible to decide whether the E and EA populations arise from a unique embryonic stem cell or from the existence of two stem cell populations.  相似文献   

10.
11.
Human induced pluripotent stem cells (HiPSCs) appear to be highly similar to human embryonic stem cells (HESCs). Using two genetic lineage-tracing systems, we demonstrate the generation of iPSC lines from human pancreatic islet beta cells. These reprogrammed cells acquired markers of pluripotent cells and differentiated into the three embryonic germ layers. However, the beta cell-derived iPSCs (BiPSCs) maintained open chromatin structure at key beta-cell genes, together with?a unique DNA methylation signature that distinguishes them from other PSCs. BiPSCs also demonstrated an increased ability to differentiate into insulin-producing cells both in?vitro and in?vivo, compared with ESCs and isogenic non-beta iPSCs. Our results suggest that the epigenetic memory may predispose?BiPSCs to differentiate more readily into insulin producing cells. These findings demonstrate that HiPSC phenotype may be influenced by their cells of origin, and suggest that their skewed differentiation potential may be advantageous for cell replacement therapy.  相似文献   

12.
Generation of pluripotent stem cells from neonatal mouse testis   总被引:35,自引:0,他引:35  
Although germline cells can form multipotential embryonic stem (ES)/embryonic germ (EG) cells, these cells can be derived only from embryonic tissues, and such multipotent cells have not been available from neonatal gonads. Here we report the successful establishment of ES-like cells from neonatal mouse testis. These ES-like cells were phenotypically similar to ES/EG cells except in their genomic imprinting pattern. They differentiated into various types of somatic cells in vitro under conditions used to induce the differentiation of ES cells and produced teratomas after inoculation into mice. Furthermore, these ES-like cells formed germline chimeras when injected into blastocysts. Thus, the capacity to form multipotent cells persists in neonatal testis. The ability to derive multipotential stem cells from the neonatal testis has important implications for germ cell biology and opens the possibility of using these cells for biotechnology and medicine.  相似文献   

13.
Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.  相似文献   

14.

Background  

A unique and essential property of embryonic stem cells is the ability to self-renew and differentiate into multiple cell lineages. However, the possible differences in proliferation and differentiation capabilities among independently-derived human embryonic stem cells (hESCs) are not well known because of insufficient characterization. To address this question, a side-by-side comparison of 1) the ability to maintain an undifferentiated state and to self-renew under standard conditions; 2) the ability to spontaneously differentiate into three primary embryonic germ lineages in differentiating embryoid bodies; and 3) the responses to directed neural differentiation was made between three NIH registered hES cell lines I3 (TE03), I6 (TE06) and BG01V. Lines I3 and I6 possess normal XX and a normal XY karyotype while BG01V is a variant cell line with an abnormal karyotype derived from the karyotypically normal cell line BG01.  相似文献   

15.
16.
The effect of the thymus cells of the C57BL/6 mice on the colony forming ability of the stem hemopoietic cells of the embryonic liver and bone marrow of young (3 months) and old (2 years) mice was studied their joint transplantation into the mice (CBAXXC57BL/6) F1. The stimulating effect of the thymus cells on the colony forming ability of the stem hemopoietic cells of different age depends both on the dose of the stem hemopoietic cells of embryonic liver and the dose of T-lymphocytes. A suggestion is put forward that the stimulating effect of the thymus cells on the colony formation is due to their interaction with the stem cells in the G2 phase of the mitotic cycle.  相似文献   

17.
Neural stem cells(NSCs) are one specific type of multipotential stem cells that have the ability to proliferate for a long time and to differentiate into neural cells,including neurons,astrocytes and oligodendrocytes.These NSCs exist in both the embryonic and adult central nervous system(CNS) of all mammalian species.Progress has been made in the understanding of the developmental regulation of NSCs and their function in neurogenesis.This review discusses recent progress in this area,with emphasis on work d...  相似文献   

18.
We analyzed embryonic stem cell lines for their capacity to produce aggregation chimeras with diploid or developmentally compromised tetraploid embryos. Descendants of embryonic stem cells which contributed to midgestation fetuses at high levels were capable of supporting fetal development also with tetraploid partners. Different numbers of embryonic stem cells were introduced into diploid and tetraploid morulae as well as into blastocysts by microinjection. There were no differences in the frequency of embryonic stem cell-containing fetuses when comparing aggregation or injection into morulae versus blastocysts. However, the distribution pattern of embryonic stem cell derivatives in chimeric fetuses suggested that pre-compaction embryos are more suitable for generating fetuses with high embryonic stem cell contribution. Injection of embryonic stem cells into tetraploid embryos showed that completely embryonic stem cell-derived fetuses can also be produced by this technique. Totally embryonic stem cell derived fetuses were observed in each group, when embryonic stem cells were injected into diploid embryos. However, the rate of chimeras and chimerism was lower when 1 or 3 embryonic stem cells were used versus 8 or 15 cells. This suggests that the number of embryonic stem cells introduced might play a role in the colonization ability.  相似文献   

19.
The novel human embryonic stem cell (hESC) subline SC6-FF was derived from SC6 cells in an allogenic feeder-free culture system. Key components of the feeder-free culture system were extracellular matrix proteins and conditioned medium from the mesenchymal stem cell line SC5-MSC. These conditions are allogenic for SC6-FF cells. SC6-FF subline underwent more than one hundred cell population doublings and retained a normal diploid karyotype; 46, XX. The average population doubling time was 23.7 ± 0.8 h, similar to that of the parent SC6 line. The presence of undifferentiated hESC markers (alkaline phosphatase activity, Oct-4, SSEA-4, and TRA-1-60) was verified by histochemistry and immunofluorescence. Cells were distinguished from parental cells in size and morphology as a result of spontaneous differentiation. These cells exhibited the ability to differentiate into derivates of three germ layers by expressing common markers of the ectoderm (alpha-fetoprotein), mesoderm (a-actinin) and endoderm (a-fetoprotein) cells. We could conclude that characteristics of the novel feeder-free SC6-FF subline correspond to the status of human embryonic stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号