首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein B100 (apoB) is a large secretory protein that forms very low density lipoprotein in liver. An in vitro degradation assay was developed using rabbit reticulocyte (RR) lysate in order to investigate the mechanism of intracellular degradation of newly synthesized apoB by the ubiquitin-proteasome pathway. [3H]apoB, isolated from [3H]leucine pulsed/chased Hep G2 cells, was degraded 51% when incubated for 2 h at 37°C in an assay mixture that included RR lysate (source of the ubiquitin conjugation system and proteasome) and an exogenous ATP regenerating system. ApoB degradation was ATP-dependent and degradation fragments were not observed suggesting that the very large apoB molecule was extensively degraded. ApoB degradation was decreased to 50% when potent proteasome inhibitors, clasto-lactacystin β-lactone (10 μM) or MG-132 (50 μM), were added to the reaction mixture, but was not affected by the cysteine protease inhibitor, E-64, or the serine protease inhibitor, phenylmethylsulfonyl fluoride. ApoB degradation was inhibited by the mutant ubiquitin protein K48R and by ubiquitin aldehyde, an inhibitor of ubiquitin-protein isopeptidases. During incubation ubiquitination of apoB increased even as apoB was being degraded. These results suggest that in vitro degradation of apoB, a large secretory protein that is normally found in the endoplasmic reticulum (ER) lumen or associated with the ER membrane, was proteasome-dependent and involved both ubiquitination and deubiquitination steps.  相似文献   

2.
Cardozo C  Wu X  Pan M  Wang H  Fisher EA 《Biochemistry》2002,41(31):10105-10114
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.  相似文献   

3.
It has been well established that the biogenesis of apoB is mediated co-translationally by the cytosolic proteasome. Here, however, we investigated the role of both the cytosolic proteasome as well as non-proteasome-mediated degradation systems in the post-translational degradation of apoB. In pulse-chase labeling experiments, co-translational (0-h chase) apoB degradation in both intact and permeabilized cells was sensitive to proteasome inhibitors. Interestingly, turnover of apoB in intact cells over a 2-h chase was partially inhibitable by lactacystin, thus suggesting a role for the cytosolic proteasome in the post-translational degradation of apoB. In permeabilized cells, however, there was no post-translational protection of apoB by lactacystin. Further investigations of proteasomal activity in HepG2 cells revealed that, following permeabilization, there was a dramatic loss of the 20 S proteasomal subunits, and consequently the cells exhibited no detectable lactacystin-inhibitable activity. Thus, apoB fragmentation and the generation of the 70-kDa apoB degradation fragment, characteristic of permeabilized cells, continued to occur in these cells despite the absence of functional cytosolic proteasome. Similar results were observed when we used a derivative of lactacystin, clastolactacystin beta-lactone, which represents the active species of the inhibitor. Interestingly, however, the abundance of the 70-kDa fragment could be modulated by the microsomal triglyceride transfer protein inhibitor, BMS-197636, as well as by pretreatment of the permeabilized cells with dithiothreitol. These data thus suggest that although the cytosolic proteasome appears to be involved in the post-translational turnover of apoB in intact cells, the specific post-translational fragmentation of apoB generating the 70-kDa fragment observed in permeabilized cells occurs independent of the cytosolic proteasome.  相似文献   

4.
The transport of apolipoprotein B (apoB) between the endoplasmic reticulum (ER) and Golgi was studied in puromycin-synchronized HepG2 cells, using an antibody that could distinguish between apoB in ER and Golgi compartments. In cells with normal ER-to-Golgi transport, both albumin and apoB colocalized throughout the ER and appeared as intense, compact signals in Golgi. When ER-to-Golgi transport was blocked with brefeldin A, apoB and albumin remained colocalized in the ER network and three-dimensional constructed images showed more intense signals for both proteins in a central, perinuclear region of the ER. When protein synthesis was stopped in cells with brefeldin A-inhibited ER-to-Golgi transport, apoB degradation was visualized as a homogeneous decrease in fluorescence signal intensity throughout the ER that could be slowed with clasto-lactacystin beta-lactone, a proteasome inhibitor. Incubation of cells with CP-10447, an inhibitor of microsomal triglyceride transfer protein, inhibited apoB, but not albumin, transport from ER to Golgi. Nanogold immunoelectron microscopy of digitonin-permeabilized cells showed proteasomes in close proximity to the cytosolic side of the ER membrane. Thus, newly synthesized apoB is localized throughout the entire ER and degraded homogeneously, most likely by neighboring proteasomes located on the cytosolic side of the ER membrane. Although albumin is colocalized with apoB in the ER, as expected, it was not targeted for ER-associated proteasomal degradation.  相似文献   

5.
Hepatic lipoprotein assembly and secretion can be regulated by proteasomal degradation of newly synthesized apoB, especially if lipid synthesis or lipid transfer is low. Our previous studies in HepG2 cells showed that, under these conditions, newly synthesized apoB remains stably associated with the endoplasmic reticulum (ER) membrane (Mitchell, D. M., Zhou, M., Pariyarath, R., Wang, H., Aitchison, J. D., Ginsberg, H. N., and Fisher, E. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14733-14738). We now show that independent of lipid synthesis, apoB chains that appear full-length are, in fact, incompletely translated polypeptides still engaged by the ribosome and associated with the ER translocon. In the presence of active lipid synthesis and transfer, translation and lipoprotein assembly are completed, and the complexes exit the ER. Upon omitting fatty acids from, or adding a microsomal triglyceride transfer protein inhibitor to, culture media to reduce lipid synthesis or transfer, respectively, apoB was degraded while it remained associated with the ER and complexed with cytosolic hsp70 and proteasomes. Thus, unlike other ER substrates of the proteasome, such as major histocompatibility complex class I molecules, apoB does not fully retrotranslocate to the cytosol before entering the ubiquitin-proteasome pathway. Although, upon immunofluorescence, apoB in proteasome-inhibited cells accumulated in punctate structures similar in appearance to aggresomes (cytosolic structures containing molecules irreversibly lost from the secretory pathway), these apoB molecules could be secreted when lipid synthesis was stimulated. The results suggest a model in which 1) apoB translation does not complete until lipoprotein assembly terminates, and 2) assembly with lipids or entry into the ubiquitin-proteasome pathway occurs while apoB polypeptides remain associated with the translocon and attached to the ribosome.  相似文献   

6.
Studies in hepatocyte cultures indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the proteasome pathway is a major mechanism for the degradation. In the present study, we have examined the detailed itinerary of apoB degradation through its secretory pathway in HepG2 cells. We found that ubiquitin-dependent proteasomal degradation of apoB largely occurred on the cytosolic surface of rough and smooth endoplasmic reticulum (ER) and that a small proportion of apoB was dislodged from the secretory organelles into the cytosolic compartment where it underwent ubiquitination for proteasomal degradation. The transmembrane conformation of apoB persisted as the protein was transported through the Golgi apparatus. We further demonstrated that proteasomal degradation of apoB was associated the Golgi apparatus but Golgi-associated apoB was not ubiquitinated, indicating an ubiquitin-independent proteasomal degradation of apoB is associated with this organelle. We conclude that apoB undergoes proteasomal degradation while going through different compartments of the secretory pathway; further, ER-associated proteasomal degradation of apoB in the ER is ubiquitin-dependent whereas that occurring in the Golgi is ubiquitin-independent.  相似文献   

7.
Co- and posttranslational regulation of apolipoprotein B (apoB) has been postulated to involve degradation by both proteasomal and nonproteasomal pathways; however, nonproteasomal mechanisms of apoB degradation are currently unknown. We have previously demonstrated an intracellular association of newly synthesized apoB with endoplasmic reticulum (ER)-60, an ER-localized protein, possessing both proteolytic and chaperone activities. In the present paper, adenoviral expression vectors containing rat ER-60 cDNA were used to achieve dose- and time-dependent overexpression of ER-60 to investigate its role in apoB100 turnover. Overexpressed ER-60 accumulated in the microsomal lumen of HepG2 cells and was associated with apoB100 in dense lipoprotein particles. Overexpression of ER-60 in HepG2 cells significantly reduced both intracellular and secreted apoB100, with no effect on the secretion of a control protein, albumin. Similar results were obtained in McA-RH7777 rat hepatoma cells. ER-60-stimulated apoB100 degradation and inhibition of apoB100 secretion were sensitive to the protease inhibitor, p-chloromercuribenzoate (pCMB), in a dose-dependent manner but were unaffected by the proteasomal or lysosomal protease inhibitors, N-acetyl-leucinyl-leucinyl-nor-leucinal, E64, and leupeptin. Interestingly, enhanced expression of ER-60 induced apoB100 fragmentation in permeabilized HepG2 cells and resulted in detection of a unique 50 kDa degradation intermediate, a process that could be inhibited by pCMB. Intracellular stability and secretion of apoB100 in primary hamster hepatocytes were also found to be sensitive to pCMB. When taken together, the data suggest an important role for ER-60 in promoting apoB100 degradation via a pCMB-sensitive process in the ER. ER-60 may act directly as a protease or may be involved indirectly as a chaperone/protein factor targeting apoB100 to this nonproteasomal and pCMB-sensitive degradative pathway.  相似文献   

8.
Mutations in the human ether-a-go-go-related gene (hERG) cause chromosome 7-linked long QT syndrome type II (LQT2). We have shown previously that LQT2 mutations lead to endoplasmic reticulum (ER) retention and rapid degradation of mutant hERG proteins. In this study we examined the role of the ubiquitin-proteasome pathway in the degradation of the LQT2 mutation Y611H. We showed that proteasome inhibitors N-acetyl-L-leucyl-L-leucyl-L-norleucinal and lactacystin but not lysosome inhibitor leupeptin inhibited the degradation of Y611H mutant channels. In addition, ER mannosidase I inhibitor kifunensine and down-regulation of EDEM (ER degradation-enhancing alpha-mannosidase-like protein) also suppressed the degradation of Y611H mutant channels. Proteasome inhibition but not mannosidase inhibition led to the accumulation of full-length hERG protein in the cytosol. The hERG protein accumulated in the cytosol was deglycosylated. Proteasome inhibition also resulted in the accumulation of polyubiquitinated hERG channels. These results suggest that the degradation of LQT2 mutant channels is mediated by the cytosolic proteasome in a process that involves mannose trimming, polyubiquitination, and deglycosylation of mutant channels.  相似文献   

9.
Studies in different liver-derived cells in culture indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the ubiquitin-proteasome pathway is a major mechanism for the degradation. The proteasomal degradation of apoB-100 was postulated to be an intrinsic property of the protein that occurs even in the presence of optimal amounts of lipids supplied to the cell. We examined apoB-100 and apoB-48 biogenesis in CaCo2, a human colon carcinoma cell line. To our surprise, apoB-100 and apoB-48 were quantitatively secreted by CaCo2 cells; essentially none of the newly synthesized apoB was degraded before secretion in a 2-h period whether the cells were cultured on filter or on plastic. Furthermore, although ubiquitin immunoreactivity was readily detected in the intracellular apoB isolated from HepG2 cells, little or no ubiquitin was detectable in the intracellular apoB from CaCo2 cells. The amounts of free ubiquitin and total and non-apoB ubiquitinated proteins were comparable in HepG2 and CaCo2 cells, indicating that CaCo2 cells have the necessary machinery for tagging ubiquitin chains onto cellular proteins for proteasomal degradation. Incubation in lipoprotein-deficient serum did not induce apoB degradation, but the addition of a microsomal triglyceride transfer protein inhibitor led to apoB degradation in CaCo2 cells. Finally, similar proportions of apoB polypeptide in isolated microsomes from CaCo2 and HepG2 cells were accessible to exogenously added trypsin, indicating that the mere exposure of apoB nascent chains to the cytosolic compartment is insufficient to cause the proteasomal degradation. Therefore, the intracellular degradation of apoB is not an intrinsic property of the protein, and the phenomenon is neither universal nor inevitable. The unconditional use of apoB as a paradigm for intracellular protein degradation is not warranted.  相似文献   

10.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

11.
We studied the biogenesis of apolipoprotein B (apoB) in primary hepatocytes isolated from hamster liver, an animal model with striking resemblance to humans in lipoprotein metabolism. Hamster hepatocytes were found to assemble and secrete apoB-containing lipoproteins at a density of VLDL. Intracellular mechanisms of apoB biogenesis were investigated in both intact and permeabilized hamster hepatocytes. Translocational status of hamster apoB-100 was examined using trypsin protection assays in permeabilized cells as well as isolated microsomes which revealed that 27-42% of newly synthesized apoB was trypsin accessible as opposed to a control protein, transferrin, which was found to be essentially insensitive to exogenous trypsin. Subcellular fractionation of membrane and lumenal apoB pools indicated, however, that only a minor fraction of hamster apoB was associated with the microsomal membrane. Approximately 40% of newly synthesized apoB was found to be degraded post-translationally in a process sensitive to MG132. Immunoblotting analysis of apoB immunoprecipitates revealed ubiquitination of hamster apoB suggesting the involvement of the proteasome in its intracellular turnover. In addition to MG132, o-phenanthroline, a metalloprotease inhibitor, was also effective in stabilizing hamster apoB. Experiments in permeabilized hamster hepatocytes further confirmed post-translational instability of hamster apoB which was degraded over a 3-h chase generating proteolytic fragments including 167, 70, 57, and 46 kDa intermediates. Of these only the 70 kDa fragment was ALLN sensitive. Oleate treatment of hamster hepatocytes provided protection against intracellular apoB degradation, but did not stimulate its extracellular secretion. ApoB was assembled in the microsomal lumen into lipoprotein particles with densities of LDL and VLDL which were subsequently secreted as VLDL with a minor fraction forming HDL-like particles. In summary, hamster hepatocytes appear to efficiently assemble and secrete apoB-containing VLDL, although a significant pool of newly synthesized apoB is retained intracellularly and becomes sensitive to proteasome-mediated degradation as well as other proteases in the secretory pathway, generating specific degradative intermediates.  相似文献   

12.
We previously reported that treatment of Hep G2 cells with oleate significantly increased apolipoprotein B (apoB) secretion by reducing early intracellular degradation of nascent apoB. In the current study, inhibitors of secretory protein transport (brefeldin A and monensin), cell fractionation studies, and protease protection assays were utilized to determine the location of apoB degradation and to better define the mechanism whereby oleate treatment reduces nascent apoB intracellular degradation. When cells were treated with brefeldin A, which blocks endoplasmic reticulum (ER) to Golgi protein transport, apoB degradation continued in control cells, suggesting that apoB is degraded in the ER. When oleate-treated cells were blocked with brefeldin A, oleate failed to protect apoB from intracellular degradation. The effects of brefeldin A were not due to effects on lipid synthesis as brefeldin A did not inhibit the synthesis of triglyceride, phospholipid, free cholesterol, or cholesteryl ester in control cells and did not prevent the increases in triglyceride (14-fold) and phospholipid (1.4-fold) synthesis seen in oleate-treated cells. Simultaneous treatment of cells with brefeldin A and nocodazole, which inhibits retrograde transport of proteins from Golgi to ER, added to the evidence for the ER as the site of apoB degradation. This conclusion received further support from experiments in which cells were treated with monensin, a Na+ ionophore which halts protein secretion at the level of the trans-Golgi network. Early degradation of nascent apoB (between 10 and 20 min of chase) was observed in monensin-treated cells, but then cellular apoB degradation ceased and apoB was stable during the remaining chase period. More apoB accumulated in the Golgi of cells that had been treated with oleate and monensin. These results suggest that ER degradation occurs in monensin-treated cells, but then stops as apoB is transferred to the Golgi. The results obtained in whole cells were confirmed in studies using isolated ER and Golgi, which indicated that ER contains a proteolytic activity which degrades apoB, in vitro, whereas Golgi does not. ApoB degradation in isolated ER was not reduced by pretreatment with oleate. Finally, protease protection assays carried out with isolated microsomes indicated that a majority of the apoB in both control or oleate-treated HepG2 cells was located on the cytosolic side of the membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
ATP-sensitive potassium (K(ATP)) channels of pancreatic beta-cells mediate glucose-induced insulin secretion by linking glucose metabolism to membrane excitability. The number of plasma membrane K(ATP) channels determines the sensitivity of beta-cells to glucose stimulation. The K(ATP) channel is formed in the endoplasmic reticulum (ER) on coassembly of four inwardly rectifying potassium channel Kir6.2 subunits and four sulfonylurea receptor 1 (SUR1) subunits. Little is known about the cellular events that govern the channel's biogenesis efficiency and expression. Recent studies have implicated the ubiquitin-proteasome pathway in modulating surface expression of several ion channels. In this work, we investigated whether the ubiquitin-proteasome pathway plays a role in the biogenesis efficiency and surface expression of K(ATP) channels. We provide evidence that, when expressed in COS cells, both Kir6.2 and SUR1 undergo ER-associated degradation via the ubiquitin-proteasome system. Moreover, treatment of cells with proteasome inhibitors MG132 or lactacystin leads to increased surface expression of K(ATP) channels by increasing the efficiency of channel biogenesis. Importantly, inhibition of proteasome function in a pancreatic beta-cell line, INS-1, that express endogenous K(ATP) channels also results in increased channel number at the cell surface, as assessed by surface biotinylation and whole cell patch-clamp recordings. Our results support a role of the ubiquitin-proteasome pathway in the biogenesis efficiency and surface expression of beta-cell K(ATP) channels.  相似文献   

14.
During recent years, it has become increasingly clear that the ubiquitin-proteasome proteolytic pathway regulates intracellular protein degradation in various physiological and pathophysiological conditions. Substrates specifically degraded by the proteasome are important tools to assess the involvement of the proteasome in cellular proteolysis. It was recently proposed that the membrane permeable substrate methoxysuccinyl-phenylalanine-leucine-phenylalanine-7-amido-4- trifluoromethyl coumarin (FLF) is degraded specifically by the proteasome. The role of other proteolytic pathways in the degradation of FLF, however, is not fully understood. In the present study, we tested the role of different proteolytic pathways in the degradation of FLF in cultured myotubes and HepG2 cells by treating the cells with inhibitors of lysosomal, calpain and proteasome activity. In addition, we tested the hypothesis that insulin blocks proteasome-dependent degradation of FLF in myotubes and HepG2 cells. Results suggest that degradation of FLF in both myotubes and HepG2 cells is regulated by proteasome and calpain activity but not by lysosomal activity. Insulin inhibited proteasome-dependent but not calpain-dependent degradation of FLF in both myotubes and HepG2 cells. The results are important because they suggest that FLF degradation does not specifically reflect proteasome activity.  相似文献   

15.
The grapefruit flavonoid, naringenin, is hypocholesterolemic in vivo, and inhibits basal apolipoprotein B (apoB) secretion and the expression and activities of both ACAT and microsomal triglyceride transfer protein (MTP) in human hepatoma cells (HepG2). In this report, we examined the effects of naringenin on apoB kinetics in oleate-stimulated HepG2 cells and determined the contribution of microsomal lumen cholesteryl ester (CE) availability to apoB secretion. Pulse-chase studies of apoB secretion and intracellular degradation were analyzed by multicompartmental modeling. The model for apoB metabolism in HepG2 cells includes an intracellular compartment from which apoB can be either secreted or degraded by both rapid and slow pathways. In the presence of 0.1 mM oleic acid, naringenin (200 micro M) reduced the secretion of newly synthesized apoB by 52%, due to a 56% reduction in the rate constant for secretion. Intracellular degradation was significantly increased due to a selective increase in rapid degradation, while slow degradation was unaffected. Incubation with either N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) or lactacystin showed that degradation via the rapid pathway was largely proteasomal. Although these changes in apoB metabolism were accompanied by significant reductions in CE synthesis and mass, subcellular fractionation experiments comparing naringenin to specific ACAT and HMG-CoA reductase inhibitors revealed that reduced accumulation of newly synthesized CE in the microsomal lumen is not consistently associated with reduced apoB secretion. However, naringenin, unlike the ACAT and HMG-CoA reductase inhibitors, significantly reduced lumenal TG accumulation. We conclude that naringenin inhibits apoB secretion in oleate-stimulated HepG2 cells and selectively increases intracellular degradation via a largely proteasomal, rapid kinetic pathway. Although naringenin inhibits ACAT, CE availability in the endoplasmic reticulum (ER) lumen does not appear to regulate apoB secretion in HepG2 cells. Rather, inhibition of TG accumulation in the ER lumen via inhibition of MTP is the primary mechanism blocking apoB secretion.  相似文献   

16.
The human cytomegalovirus protein US11 induces the dislocation of MHC class I heavy chains from the endoplasmic reticulum (ER) into the cytosol for degradation by the proteasome. With the use of a fractionated, permeabilized cell system, we find that US11 activity is needed only in the cell membranes and that additional cytosolic factors are required for heavy chain dislocation. We identify ubiquitin as one of the required cytosolic factors. Cytosol depleted of ubiquitin does not support heavy chain dislocation from the ER, and activity can be restored by adding back purified ubiquitin. Methylated-ubiquitin or a ubiquitin mutant lacking all lysine residues does not substitute for wild-type ubiquitin, suggesting that polyubiquitination is required for US11-dependent dislocation. We propose a new function for ubiquitin in which polyubiquitination prevents the lumenal domain of the MHC class I heavy chain from moving back into the ER lumen. A similar mechanism may be operating in the dislocation of misfolded proteins from the ER in the cellular quality control pathway.  相似文献   

17.
T Biederer  C Volkwein    T Sommer 《The EMBO journal》1996,15(9):2069-2076
We have investigated the degradation of subunits of the trimeric Sec61p complex, a key component of the protein translocation apparatus of the ER membrane. A mutant form of Sec6lp and one of the two associated proteins (Sss1p) are selectively degraded, while the third constituent of the complex (Sbh1p) is stable. Our results demonstrate that the proteolysis of the multispanning membrane protein Sec61p is mediated by the ubiquitin-proteasome pathway, since it requires polyubiquitination, the presence of a membrane-bound (Ubc6) and a soluble (Ubc7) ubiquitin-conjugating enzyme and a functional proteasome. The process is proposed to be specific for unassembled Sec61p and Sss1p. Thus, our results suggest that one pathway of ER degradation of abnormal or unassembled membrane proteins is initiated at the cytoplasmic side of the ER.  相似文献   

18.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

19.
Protease protection assays of apolipoprotein B100 (apoB) in digitonin-permeabilized HepG2 cells indicated that multiple domains of apoB are exposed to the cytosol through an extensive portion of the secretory pathway. The intracellular orientation of apoB in the secretory pathway was confirmed by immunocytochemistry using antibodies recognizing specific domains of apoB in streptolysin-O (STP-O)– and saponin-permeabilized HepG2 cells. Lumenal epitopes on marker proteins in secretory pathway compartments (p63, p53, and galactosyltransferase) were not stained by antibodies in STP-O–treated cells, but were brightly stained in saponin-treated cells, confirming that internal membranes were not perforated in STP-O–treated cells. An anti-apoB peptide antibody (B4) recognizing amino acids 3221–3240 caused intense staining in close proximity to the nuclear membrane, and less intensely throughout the secretory pathway in STP-O–permeabilized cells. Staining with this antibody was similar in STP-O– and saponin-treated cells, indicating that this epitope in apoB is exposed to the cytosol at the site of apoB synthesis and throughout most of the remaining secretory pathway. Similar results indicating a cytosolic orientation were obtained with monoclonal antibody CC3.4, which recognizes amino acids 690–797 (79–91 kD) in apoB. Two polyclonal antibodies made to human LDL and two monoclonal antibodies recognizing amino acids 1878–2148 (D7.2) and 3214–3506 (B1B6) in apoB did not produce a strong reticular signal for apoB in STP-O–treated cells. The anti-LDL and B1B6 antibodies produced almost identical punctate patterns in STP-O–treated cells that overlapped with LAMP-1, a membrane marker for lysosomes. These observations suggest that the B1B6 epitope of apoB is exposed on the surface of the lysosome. The results identify two specific regions in apoB that are exposed to the cytosol in the secretory pathway.  相似文献   

20.
S E Moore  C Bauvy    P Codogno 《The EMBO journal》1995,14(23):6034-6042
Free polymannose oligosaccharides have recently been localized to both the vesicular and cytosolic compartments of HepG2 cells. Here we investigated the possibility that free oligosaccharides originating in the lumen of the endoplasmic reticulum (ER) are transported directly into the cystosol. Incubation of permeabilized cells in the absence of ATP at 37 degrees C led to the intravesicular accumulation of free Man9GlcNAc2 which was generated from dolichol-linked oligosaccharide in the ER. This oligosaccharide remained stable within the permeabilized cells unless ATP was added to the incubations at which time the Man9GlcNac2 was partially converted to Man8GlcNAc2, and both these components were released from an intravesicular compartment into the cytosolic compartment of permeabilized cells. In contrast, when permeabilized cells, primed with either free triglucosyl-oligosaccharide or a glycotripeptide, were incubated with ATP both these structures remained associated with the intravesicular compartment. As the conditions in which free oligosaccharides were transported out of the intravesicular compartment into the cytosolic compartment did not permit vesicular transport of glycoproteins from the ER to the Golgi apparatus our data demonstrate the presence of a transport process for the delivery of free polymannose oligosaccharides from the ER to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号