首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High voltage free flow electrophoresis is a carrier-free method used for analytical and preparative cell separation, based on charge surface properties of cells. Two cell populations from the proximal tubule of the rabbit kidney were isolated by free flow electrophoresis from a suspension of pure proximal cells. This single-cell suspension was obtained through an original method by the combination of a Ca-binder action and gentle mechanical treatment associated with several shifting steps, on a pure suspension of isolated proximal tubules. Before the electrophoretic separation, the proximal cell origin was confirmed by enzymatic marker measurements, and the metabolic capacity was assessed by the cell respiratory activity. The isolated cells were very poor in distal tubule marker enzymes and were enriched in proximal tubule marker enzymes. Respiratory measurement showed a high cell metabolic capacity. After the electrophoretic separation, the origin of the cell populations was assessed by measuring specific marker enzymes. The cells in the slow-moving electrophoresis fractions had a high gamma-glutamyl transpeptidase activity and a low glucose-6-phosphatase activity. The fast moving cells showed a high glucose-6-phosphatase content and a poor gamma-glutamyl transpeptidase activity. Cells isolated by free flow electrophoresis were shown to possess long microvilli. This new methodology, allowed for the first time, the separation of a fast-moving cell population originating from the convoluted portion of the proximal tubule and a slow-moving cell population originating from the straight part of the proximal tubule of the rabbit kidney.  相似文献   

2.
Free-flow electrophoresis allows the separation of different cell populations from a cell suspension isolated from rabbit kidney cortex after perfusion of the kidneys with a calcium-binder, followed by gentle mechanical treatment. After electrophoretic separation, analysis of the adenylate cyclase activities after stimulation by various hormones allows the precise determination of the origin of the cell populations with different electrophoretic mobilities. Adenylate cyclase from the slow-moving main cell population was only sensitive to parathyroid hormone. These cells had also high alkaline phosphatase content, further demonstrating their proximal origin. The various fast- moving cell populations had adenylate cyclase sensitive to isoproterenol and arginine vasopressin but were less sensitive to parathyroid hormone than the slow-moving cells. Their alkaline phosphatase content was also much lower. This indicates that these fast- moving cell populations originate from both the granulous segment of the distal tubule and from the collecting ducts. The adenylate cyclase activity and the cyclic AMP contents of isolated proximal cells maintained in culture medium were also investigated.  相似文献   

3.
The organic anion p-aminohippurate (PAH) is specifically secreted by the renal proximal tubule. The possibility was examined that the probenecid sensitive PAH transport system (which is involved in this secretory process in renal proximal tubule cells in vivo) is retained in primary cultures of rabbit kidney proximal tubule cells. Significant 3H-PAH uptake into primary cultures of proximal tubule cells was observed. After 10 min, 150 pmole PAH/mg protein had accumulated intracellularly. Given an intracellular fluid volume of 10 microliter/mg protein, the intracellular PAH concentration was estimated to be 15 microM. The initial rate of PAH uptake (when 50 microM PAH was in the uptake buffer) was inhibited 50% by 2 mM probenecid. Intact monolayers also exhibited Na+-dependent alpha methyl-D-glucoside uptake (an apical marker). Basolateral membranes were purified from primary rabbit kidney proximal tubule cell cultures. Probenecid sensitive PAH uptake into the membrane vesicles derived from the primary cultures was observed. The rate of PAH uptake was equivalent to that obtained with vesicles obtained from the rabbit renal cortex. No significant Na+-dependent D-glucose uptake into the vesicles was observed, indicating that primarily basolateral membrane vesicles had indeed been obtained.  相似文献   

4.
Nine human kidney epithelial cell lines, isolated from small biopsied material and from whole kidney, were propagated in both a hormonally defined medium and a medium supplemented with serum. At confluency, hemicysts or domes, typical of cultured epithelial cells, were formed by these cells. Monolayers had junctional complexes between cells and the presence of numerous microvilli on the cell surface. Parathyroid hormone markedly stimulated these cells to produce cyclic AMP. They also contained high levels of gamma-glutamyltranspeptidase, leucine aminopeptidase, and maltase, enzymes that are associated with the brush-border membrane of the proximal tubule. The cultured cells demonstrated the ability to transport amino acids and alpha-methylglucoside, a substrate actively transported only by the proximal tubule in the kidney. Based on these findings, the cultured cells reflected a number of characteristics associated with the proximal tubule. These renal epithelial cell lines may provide a useful model for studying various aspects of human renal physiology and biochemistry.  相似文献   

5.
In the intact kidney, renal proximal tubule cells accumulate p-aminohippurate (PAH) via a basolateral, probenecid- and sodium-sensitive transport system. Primary cultures of rabbit proximal tubule cells retain sodium-glucose co-transport in culture, but little is known about PAH transport in this system. Purified proximal tubule cells from a rabbit were grown in culture and assessed for PAH and alpha-methyl-D-glucoside uptake capacities as well as proximal tubule marker enzyme activities. Control PAH uptake on collagen-coated filters (20 +/- 3 pmol/mg protein.min; n = 8) was not significantly different from uptake in the presence of 1 mM probenecid (19 +/- 4 pmol/mg protein.min; n = 8). Uptake from the basal side of the cell was 3.9 +/- 0.7 times greater than that from the apical side. In multi-well plate studies, the uptake was significantly reduced by removing sodium from the medium and stimulated by coating the wells with collagen. Glutarate (10 mM) had no effect on the uptake of PAH. Other differentiated proximal tubule characteristics were retained in culture, including the ability to form domes and to transport glucose by a phlorizin-sensitive system. Phlorizin-sensitive 1 mM alpha-methyl-D-glucoside uptake was 134 +/- 42 pmol/mg protein.min (n = 7; P less than 0.02). The proximal tubule marker enzymes alkaline phosphatase and gamma-glutamyltranspeptidase, increased in activity in the cultures after confluence. It was concluded that whereas some differentiated properties were retained during primary culture of rabbit proximal tubule cells, the PAH transport system was selectively lost or modified from that present in the intact kidney.  相似文献   

6.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

7.
Summary A primary rabbit kidney epithelial cell culture system has been developed which retains differentiated functions of the renal proximal tubule. In addition, the cells have a distinctive metabolism and spectrum of hormone responses. The primary cell were observed to retain in vitro a Na+-dependent sugar transport system (distinctive of the proximal segment of the nephron) and a Na+-dependent phosphate transport system. Both of these transport processes are localized on the apical membrane of proximal tubule cells in vivo. In addition, probenicid-sensitivep-aminohippurate (PAH) uptake was observed in basolateral membranes of the primary tubule cells, and the PAH uptake by these vesicles occurred at a rate that was very similar to that observed with membranes derived from the original tissue. Several other characteristics of the primary cells were examined, including hormone-sensitive cyclic AMP production and phosphoenolpyruvate carboxykinase (PEPCK) activity. Like the cells in vivo, the primary proximal tubule cells were observed to produce significant cyclic AMP in response to parathyroid hormone, but not in response to arginine vasopressin or salmon calcitonin. Significant PEPCK acivity was observed in the particulate fraction derived from a homogenate of primary rabbit kidney proximal tubule cells. This paper was presented at a Symposium on the Physiology and Toxicology of the Kidney In Vitro co-sponsored by The Society of Toxicology (SOT) and the Tissue Culture Association held at the 27th annual meeting of the SOT in Dallas, Texas in 1988. This work was supported by Grant 9 RO1 DK40286-07 from the National Institutes of Health, Bethesda, MD, and NIH Research Career Development Award 1 K04 CA 0088-01 to M.T.  相似文献   

8.
A homogeneous population of single cells from the thick ascending limb of Henle's loop (TALH) has been isolated from the rabbit kidney medulla. A total medullary cell suspension was prepared by a series of collagenase, hyaluronidase, and trypsin digestions and separated on a Ficoll gradient (2.6-30.7% wt/wt). Morphologically, the cells isolated from the TALH were homogeneous and showed polarity within their plasma membrane structure, with a few blunt microvilli on their apical surface and deep infoldings of the basal-lateral membrane. Biochemically, the TALH cells were highly enriched in calcitonin-sensitive adenylate cyclase and Na, K-ATPase. Alkaline phosphatase and arginine vasopressin- sensitive adenylate cyclase, highly concentrated in proximal tubule and collecting duct, were present only in low concentrations in the TALH cells. Additionally, furosemide, a diuretic inhibiting sodium chloride transport in the TALH in vivo, inhibited oxygen consumption of the TALH cells in a dose-dependent manner. The TALH cells were viable, as judged by morphological appearance, trypan blue exclusion, the response of oxygen consumption to 2,4-dinitrophenol, succinate and ouabain, and the cellular Na, K and ATP levels.  相似文献   

9.
A single-cell suspension has been prepared from rabbit kidney cortex by using a Ca-binding medium and gentle mechanical forces. The suspension was subjected to carrier-free electrophoresis, and several cell fractions were obtained. Proximal and distal tubule cell populations could be identified by their morphology. Renin-containing cells were located by means of radioimmunoassay. The morphology of the cells and their vitality (uridine incorporation) are discussed.  相似文献   

10.
To determine the localization of T4 5'-monodeiodinase activity in rabbit and rat nephron segments, the formation of tri-iodothyronine (T3) from thyroxine (T4) was measured in kidney homogenate and in isolated nephron segments obtained by the microdissection method. In order of decreasing activity, homogenates of rabbit renal cortex, outer medulla and inner medulla were capable of converting T4 to T3. In the isolated nephron segments of the rabbit cortex, the activities were noted in both proximal convoluted and proximal straight tubules. On the other hand, the activities were not detected in segments including the cortical thick ascending limb of Henle's loop, the distal convoluted tubule, the connecting tubule, and the cortical collecting tubule. It is concluded that both the convoluted and the straight tubules are the sites of T3 production in the kidney.  相似文献   

11.
Proximal convoluted, proximal straight, and cortical collecting tubular segments isolated from rabbit kidney were perfused with I 125-labeled rabbit serum albumin (RSA-I 125) in ultrafiltrate of serum for up to 3 hr After perfusion, the segments were fixed with glutaraldehyde, embedded in Epon, and either counted with a gamma spectrometer to quantitate protein accumulation or analyzed by electron microscope radioautography to sequentially localize radioactivity Proximal convoluted and proximal straight segments accumulate RSA-I 125 nearly linearly as a function of time whereas cortical collecting segments do not accumulate measurable amounts of protein. The rate of accumulation of RSA-I 125 in the proximal convoluted tubule is 2 6 times as great as that in the proximal straight tubule. Electron microscope radioautography of the isolated proximal tubule demonstrated that RSA-I 125 is taken up via small apical vesicles and tubular invaginations, released into large cytoplasmic vacuoles, and finally concentrated in membrane-bounded structures, some of which are acid phosphatase positive These results show that albumin is absorbed by proximal tubules and may be degraded intracellularly within lysosomes. In addition, less radioactivity was located at all times over the lateral intercellular and basilar labyrinthine spaces, suggesting that labeled albumin and/or its breakdown products may be transported across the peritubular cell membrane.  相似文献   

12.
Summary Transmission electron micrographs of the mesonephric nephron in 18 day rabbit embryos reveal major cytological structures reappearing in the nephron of the definitive rabbit kidney. The initial segment of the proximal tubule resembles (despite quite different cell proportions) the cell picture of the metanephric S2-segment. The changes occurring at the end of the terminal proximal segment, the decrease in cell size, flattening of the nuclei, shortening of the brush border and reduction of Golgi profiles and endocytotic organelles largely parallel those between S2 and S3. The type of increased basolateral cell face of the proximal and distal tubule cells shows only quantitative differences to their metanephric counterparts. The distal tubule, which cannot be further subdivided (except the macula densa-region) exhibits varying degrees of cell interdigitations with vertically arranged and partially arching lateral ridges. This tubule matches closely the metanephric medullary straight part of the distal tubule, so that the sequence of the first mesonephric nephron segments is similar to the metanephric ones with the exception that the thin limb of Henle is absent. The large macula densa-region is characterized by its cell height and distended infranuclear spaces. The principal cells of the collecting tubule, with a few basal infoldings and intense short lateral interlockings resemble metanephric cells of the outer medullary collecting duct. The mitochondria-rich intercalated cells occur in dark and light contrasting forms and are more frequent than was evident from our SEM-study. The homogeneous cell population of the Wolffian duct is characterized by large glycogen deposits and comparatively smooth cell faces.  相似文献   

13.
Primary cultures of renal rabbit proximal tubule cells were initiated from a pure suspension of proximal tubule fragments. Proximal tubule cells were grown in a hormone-supplemented, serum-free medium containing low concentrations of antibiotics. Confluent monolayers exhibited multicellular dome formation, indicating the presence of transepithelial solute and water transport. Ultrastructural examination revealed a monolayer of polarized epithelial cells with tight junctions and sparse membraneous microvilli facing the culture medium. Time course biochemical characterization was performed using a palette of 12 enzymes, representative of important metabolic functions or pathways. Brush-border-associated enzymes (gamma-glutamyl transpeptidase and alanine aminopeptidase) were moderately reduced throughout the culture whereas alkaline phosphatase was markedly decreased at confluency. Mitochondrial and lysosomal marker enzymes were well preserved over the culture period. Glutathione-S-transferase activity remained stable during the 16-day culture period investigated. Glycolysis enzyme activities (lactate dehydrogenase and hexokinase) were enhanced, as a function of culture age. Na(+)-K(+)-ATPase activity rise was concomitant with the increase of glycolysis marker enzymes. In contrast, the gluconeogenesis marker enzyme, glucose-6-phosphatase, fell dramatically to reach a low level equivalent to 4% of the activity measured in isolated proximal tubules. Primary cultures exhibited several differentiated functions of the proximal tubule cell: (a) PTH alone was able to induce a significant stimulation of adenylate cyclase activity, unlike isoproterenol, thyrocalcitonin, and arginine vasopressin, and (b) sodium-dependent alpha-methylglucoside (AMG) transport was detected. This AMG uptake was selectively inhibited by phlorizin (5 X 10(-3) M), which is a competitive inhibitor of glucose uptake at the apical membrane. Complete characterization made it possible to investigate hitherto unexplored aspects of in vitro cultured proximal tubule cells. This primary culture model could provide a useful and reliable tool to investigate in vitro renal proximal tubule function, under normal conditions or after a drug-induced toxicity.  相似文献   

14.
The properties of primary rabbit kidney proximal tubule cells in glucose-free serum-free medium have been examined. Primary rabbit kidney proximal tubule cells were observed to grow at the same rate, 1.0 doublings/day, both in glucose-free and in glucose-supplemented medium. Growth in glucose-free medium was dependent upon the presence of an additional nutritional supplement, such as glutamine, pyruvate, palmitate, lactate, or beta hydroxybutyrate. Lactate, pyruvate, and glutamate are utilized for renal gluconeogenesis in vivo. The growth of the primary rabbit kidney proximal tubule cells in glucose-free medium was also dependent upon the presence of the three growth supplements insulin, transferrin, and hydrocortisone. Insulin was growth stimulatory to the primary proximal tubule cells in glucose-free medium, although insulin causes a reduction in the phosphoenolpyruvate carboxykinase (PEPCK) activity in these cells. PEPCK is a key regulatory enzyme in the gluconeogenic pathway. In order to evaluate whether or not the primary cells have gluconeogenic capacity, their glucose content was determined. The cells contained 5 pmoles D-glucose/mg protein. However, no significant glucose was detected in the medium. Presumably, the primary cells were either utilizing or storing the glucose made by the gluconeogenic pathway. Consistent with this latter possibility, cellular glycogen levels were observed to increase with time in culture. The effect of glucose on the expression of the alpha I(IV) collagen and laminin B1 chain genes was examined. Northern analysis indicated that the level of alpha I(IV) collagen mRNA was significantly elevated in glucose containing, as compared with glucose deficient, medium. In contrast, laminin B1 chain mRNA levels were not significantly affected by the glucose content of the medium.  相似文献   

15.
Proximal tubules suitable for in vitro culture were prepared from rat kidney cortex by a Ficoll-gradient centrifugation technique which yielded greater than 94% purity. The tubules were seeded into culture dishes, and cell growth was monitored in both Dulbecco's Modified Eagle's Medium containing 10% fetal calf serum and in a defined medium consisting of 50:50 Ham's F12 and Dulbecco's supplemented with insulin, transferrin, and hydrocortisone. Growth in serum-containing medium was continuous; however, the specific activity of the brush border enzyme alkaline phosphatase decreased rapidly with time, and the culture morphology became fibroblastic by 6 days. Neither collagen-coating of the dishes nor addition of the differentiation inducer hexamethylene-bisacetamide had any significant effect on growth or enzyme activity of the cultured cells. Theophylline, another inducer of differentiation, proved cytotoxic. Growth of proximal tubule cells in defined medium proceeded for 4 days before irreversible growth arrest occurred. Alkaline phosphatase activity and epithelial morphology remained relatively constant throughout the culture period. Additions of the growth factors triiodothyronine, prostaglandin E2, and epidermal growth factor were unable to unblock the growth arrest. If cells cultured in defined medium for 3 days were switched to serum-supplemented medium, continuous growth occurred, but both alkaline phosphatase activity and epithelial morphology were rapidly lost. As a test of the culture method, rabbit proximal tubule cells were cultured under similar conditions in defined medium. Growth was prolific and continuous for up to, but not exceeding, 30 days, and differentiated properties were retained. It was concluded that both rat and rabbit proximal tubule cells have a limited proliferative capacity in vitro but that the capacity of the rat cell to divide is much reduced relative to the rabbit cell.  相似文献   

16.
The NaCl reflection coefficient in proximal tubule has important implications for the mechanisms of near isosmotic volume reabsorption. A new fluorescence method was developed and applied to measure the transepithelial (sigma NaClTE) and basolateral membrane (sigma NaClcl) NaCl reflection coefficients in the isolated proximal straight tubule from rabbit kidney. For sigma NaClTE measurement, tubules were perfused with buffers containing 0 Cl, the Cl-sensitive fluorescent indicator 6-methoxy-N-[3-sulfopropyl] quinolinium and a Cl-insensitive indicator fluorescein sulfonate, and bathed in buffers of differing cryoscopic osmolalities containing NaCl. The transepithelial Cl gradient along the length of the tubule was measured in the steady state by a quantitative ratio imaging technique. A mathematical model based on the Kedem-Katchalsky equations was developed to calculate the axial profile of [Cl] from tubule geometry, lumen flow, water (Pf) and NaCl (PNaCl) permeabilities, and sigma NaClTE. A fit of experimental results to the model gave PNaCl = (2.25 +/- 0.2) x 10(-5) cm/s and sigma NaClTE = 0.98 +/- 0.03 at 23 degrees C. For measurement of sigma NaClbl, tubule cells were loaded with SPQ in the absence of Cl. NaCl solvent drag was measured from the time course of NaCl influx in response to rapid (less than 1 s) Cl addition to the bath solution. With bath-to-cell cryoscopic osmotic gradients of 0, -60, and +30 mosmol, initial Cl influx was 1.23, 1.10, and 1.25 mM/s; a fit to a mathematical model gave sigma NaClbl = 0.97 +/- 0.04. These results indicate absence of NaCl solvent drag in rabbit proximal tubule. The implications of these findings for water and NaCl movement in proximal tubule are evaluated.  相似文献   

17.
We have cloned a new mammalian unconventional myosin, porcine myosin-VI from the proximal tubule cell line, LLC-PK1 (CL4). Porcine myosin-VI is highly homologous to Drosophila 95F myosin heavy chain, and together these two myosins comprise a sixth class of myosin motors. Myosin-VI exhibits ATP-sensitive actin-binding activities characteristic of myosins, and it is associated with a calmodulin light chain. Within LLC- PK1 cells, myosin-VI is soluble and does not associate with the major actin-containing domains. Within the kidney, however, myosin-VI is associated with sedimentable structures and specifically locates to the actin- and membrane-rich apical brush border domain of the proximal tubule cells. This motor was not enriched within the glomerulus, capillaries, or distal tubules. Myosin-VI associates with the proximal tubule cytoskeleton in an ATP-sensitive fashion, suggesting that this motor is associated with the actin cytoskeleton within the proximal tubule cells. Given the difference in association of myosin-VI with the apical cytoskeleton between LLC-PK1 cells and adult kidney, it is likely that this cell line does not fully differentiate to form functional proximal tubule cells. Myosin-VI may require the presence of additional elements, only found in vivo in proximal tubule cells, to properly locate to the apical domain.  相似文献   

18.
Among kidney tubular epithelial cell types, proximal tubule cells are one of the major renal targets for xenobiotics. Several in vitro culture models have been proposed for use of proximal tubule cells for in vitro pharmacotoxicology studies. This paper reports a comparative study of the response to cephaloridine exposure of two established cell lines from pig (LLC-PK1) and rabbit (LLC-RK1) kidneys and primary cultures of rat and rabbit proximal tubule cells. These cultured cells were first compared for their levels of activity of -methylglucopyranoside transport, alkaline phosphatase, succinate dehydrogenase, and NADPH cytochrome c reductase, their glutathione-dependent activity levels, and their adenylate cyclase response pattern to stimulation by PTH and AVP. The results presented show major phenotypic differences between these four cellular models. The differences observed in glutathione-dependent mechanism activities and regulation may in part be responsible for the variability of the responses of these four cellular models when exposed to cephaloridine.Abbreviations AVP arginine vasopressin - GGT -glutamyl transpeptidase - GRED glutathione reductase - GSH glutathione - GST glutathione S-transferase - PTC proximal tubule cells - PTH parathyroid hormone - SDH succinate dehydrogenase  相似文献   

19.
In the present study, we investigated the polarized expression of annexin IV at various stages in the growth of rabbit kidney proximal tubule cells (PTC) in primary cultures. The results of immunoblotting analysis and indirect immunofluorescence studies using a specific anti-annexin IV monoclonal antibody, indicated that annexin IV is expressed in proximal tubule cultured cells, although it was not detected in the proximal tubules present in frozen sections of kidney cortex and freshly isolated proximal tubule cells. In either non-confluent or confluent cells which remained attached to the collagen-coated support, annexin IV was mainly concentrated around the nucleus, whereas in PTC forming the monolayer of domes, it was restricted to the basolateral membrane domain. This basolateral localization was identical to that observed in other polarized epithelial cell types such as enterocytes. When the domes burst, the cells returned to the collagen-coated support and the annexin IV was again localized around the nuclei. The fact that the change of localization was very rapid suggested the existence of a considerable difference between the differentiation states of dome forming and adherent confluent cells. Moreover, a transient association of annexin IV with the basal body of apically located cilia also seemed to be correlated with a particular polarization state and/or differentiation states of adherent cultured cells, corresponding to the beginning of the polarized expression of aminopeptidase N, a hydrolase located in the apical brush border membrane, and to the falling of cells onto the support, subsequent to the bursting of the domes. In conclusion, these results provide evidence that annexin IV may constitute a new marker of the basolateral membrane domain of polarized epithelial renal cells in primary cultures. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Membrane fluidity was measured in the isolated perfused proximal tubule from rabbit kidney. The apical and basolateral plasma membranes of tubule cells were stained separately with the fluidity-sensitive fluorophore trimethylammonium-diphenyl-hexatriene (TMA-DPH) by luminal or bath perfusion. Fluorescence anisotropy (r) of TMA-DPH was mapped with spatial resolution using an epifluorescence microscope (excitation 380 nm, emission greater than 410 nm) equipped with rotatable polarizers and a quantitative imaging system. To measure r without the confounding effects of fluorophore orientation, images were recorded with emission polarizer parallel and perpendicular to a continuum of orientations of the excitation polarizer. The theoretical basis of this approach was developed and its limitations were evaluated by mathematical modeling. The tubule inner surface (brush border) was brightly stained when the lumen was perfused with 1 microM TMA-DPH for 5 min; apical membrane r was 0.281 +/- 0.006 (23 degrees C). Staining of the tubule basolateral membrane by addition of TMA-DPH to the bath gave a significantly lower r of 0.242 +/- 0.010 (P less than 0.005); there was no staining of the brush border membrane. To interpret anisotropy images quantitatively, effects of tubule geometry, TMA-DPH lifetime, fluorescence anisotropy decay, and objective-depolarization were evaluated. Steady-state and time-resolved r and lifetimes in the intact tubule, measured by a nanosecond pulsed microscopy method, were compared with results in isolated apical and basolateral membrane vesicles from rabbit proximal tubule measured by cuvette fluorometry; r was 0.281 (apical membrane) and 0.276 (basolateral membrane) (23 degrees C). These results establish a methodology to quantitate membrane fluidity in the intact proximal tubule, and demonstrate a significantly higher fluidity in the basolateral membrane than in the apical membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号