首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In fed-batch fermentation, cells of L. mesenteroides immobilized on three types of Celite were used to produce dextransucrase (DS) followed by production of dextran. A layer of calcium alginate on the porous Celite R630 particles improved their mechanical stability, increased the amount of soluble DS produced and decreased the cell leakage from the highly porous support. Enzyme production with the immobilized cell cultures was significantly affected by both pore and particle size. Immobilized cultures using Celite R648 (average particle radius of 200 mum and pore size of 0.14 mum) produced the highest total enzymatic activity, followed by Celite R633, alginate-coated Celite R630, Celite R630, and then calcium alginate beads. Culture of free cells produced about 18% more total enzymatic activity than immobilized cells in calcium alginate beads, but about 64% less than immobilized cells on Celite R630. It is expected that larger amounts of enzymatic activity than measured are immobilized inside the alginate-coated Celite R630 and calcium alginate beads due to the mass transfer limitation conferred by the dextran product formed therein. The dextran yield from conversion of sucrose to dextran and fructose with all such enzyme-enriched, immobilized-cell cultures was higher than that obtained from free-cell culture under similar conditions.  相似文献   

2.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

3.
In batch fermentation Leuconostoc mesenteroides immobilized in calcium alginate beads produced a total dextransucrase activity equal to about 93% of that by free, suspended bacterial cells under comparable conditions in a bubble column reactor. Continuous sucrose feeding (5 g/L h) to the immobilized-cell culture in the airlift bioreactor increased production of enzymatic activity by about 107% compared with ordinary batch operation of this reactor. About 14% of the enzymatic activity produced by the immobilized cells appears as soluble activity in the cell-free broth compared with about 40% in case of free cells. In an airlift bioreactor, both the soluble and the intact (sorbed and entrapped) enzymatic activity produced by the immobilized bacterial cells was about 34% greater under automatic pH control, compared to that produced in a bubble column reactor with only manual pH control. During formation of dextran by intact enzyme within cells and beads, declines are observed in apparent enzymatic activity.  相似文献   

4.
Immobilization of dextransucrase from Leuconostoc mesenteroides PCSIR-4 on alginate is optimized for application in the production of dextran from sucrose. Dextransucrase was partially purified by ethanol upto 2.5 fold. Properties of dextransucrase were less affected by immobilization on alginate beads from soluble enzyme. Highest activities of both soluble and immobilized dextransucrase found to be at 35 degrees C and optimum pH for activity remain 5.00. Substrate maxima for immobilized enzyme changed from 125 mg/ml to 200 mg/ml. Incubation time for enzyme-substrate reaction for maximum enzyme activity was increased from 15 minutes to 60 minutes in case of immobilized enzyme. Maximum stability of immobilized dextransucrase was achieved at 25 degrees C with respect to time.  相似文献   

5.
Water-insoluble, cell-free dextran biosynthesis from Leuconostoc mesenteroides NRRL B-523 has been examined. Cell-bound dextransucrase is used to produce cell-free dextran in a sucrose-rich acetate buffer medium. A comparison between the soluble and insoluble dextrans is made for various sucrose concentrations, and 15% sucrose gave the highest amount of cell-free dextran for a given time. L. mesenteroides B-523 produces more insoluble dextran than soluble dextran. The near cell-free synthesis was validated in a batch reactor, by monitoring the cell growth which is a small (10(6)-10(7) CFU/mL) and constant value throughout the synthesis.  相似文献   

6.
Lopez A  Monsan P 《Biochimie》1980,62(5-6):323-329
Dextran sucrase has been produced by fermentation of Leuconostoc mesenteroides NRRL B-512, with and without continuous sucrose addition to improve enzyme production. The enzyme preparation has been concentrated from the fermentation broth by ultrafiltration and purified by gel permeation chromatography on Ultrogel. The specific activity of the dextran sucrase was greatly enhanced by calcium chloride addition to the purified enzyme. This enzyme preparation has been immobilized by covalent coupling onto an amino porous silica support (Spherosil) activated with glutaraldehyde. Immobilized dextran sucrase derivatives with an activity up to 830 dextran sucrase units per g. support could thus be obtained. The effect of the support specific area on coupling efficiency and reaction kinetics has been investigated, and the effect of intraparticular diffusion underlined. The molecular weight distribution of the dextran has been determined when varying several parameters.  相似文献   

7.
Glucoamylase was immobilized to porous silica and its kinetics and stability were observed with acid- and alpha-amylase-hydrolyzed dextrin as feed. The enzyme was found to be extremely stable in both laboratory and pilot plant operations. When the feed had been previously only lightly hydrolyzed, pore diffusion limitation caused appreciable decreases in glucose production rate. The severity of starch hydrolysis to dextrin markedly affected ultimate glucose yields. The diffusional gradients present in the carrier pores caused the immobilized enzyme to yield lower glucose concentrations than the free enzyme at similar feed conditions.  相似文献   

8.
The metabolic and energetic properties of Leuconostoc mesenteroides have been examined with the goal of better understanding the parameters which affect dextransucrase activity and hence allowing the development of strategies for improved dextransucrase production. Glucose and fructose support equivalent specific growth rates (0.6 h-1) under aerobic conditions, but glucose leads to a better biomass yield in anaerobiosis. Both sugars are phosphorylated by specific hexokinases and catabolized through the heterofermentative phosphoketolase pathway. During sucrose-grown cultures, a large fraction of sucrose is converted outside the cell by dextransucrase into dextran and fructose and does not support growth. The other fraction enters the cell, where it is phosphorylated by an inducible sucrose phosphorylase and converted to glucose-6-phosphate (G-6-P) by a constitutive phosphoglucomutase and to heterofermentative products (lactate, acetate, and ethanol). Sucrose supports a higher growth rate (0.98 h-1) than the monosaccharides. When fructose is not consumed simultaneously with G-1-P, the biomass yield relative to ATP is high (16.8 mol of ATP.mol of sucrose-1), and dextransucrase production is directly proportional to growth. However, when the fructose moiety is used, a sink of energy is observed, and dextransucrase production is no longer correlated with growth. As a consequence, fructose catabolism must be avoided to improve the amount of dextransucrase synthesized.  相似文献   

9.
A. B  dalo  E. G  mez  J. L. G  mez  J. Bastida  M. F. M  ximo  F. Dí  az 《Process Biochemistry》1991,26(6):349-353
β-Galactosidase was immobilized in a range of supports showing suitable physico-chemical characteristics for use in fluidized bed reactors. Uncoated porous glass, alginate and κ-carrageenan beads and chromosorb-W were used as carriers. The intrinsic kinetic constants (Vmax and KM) and coupling parameters for the immobilization were calculated. The highest immobilized protein percentages and activity yields were obtained when β-galactosidase was attached through its amine groups to aldehyde-glass. The final choice of derivative for use in fluidized bed reactors should be based not only on the enzymatic activity shown by the derivatives but also on the hydrodynamic behaviour of the supports.  相似文献   

10.
Leuconostoc mesenteroides NRRL B-512(F) was grown in continuous culture under conditions of energy-limited growth. The extracellular enzyme dextransucrase (sucrose: 1,6-alpha-D-glucan 6-alpha-glucosyltransferase EC 2.4.1.5), was not detected in glucose- or maltose-limited cultures. Under conditions of sucrose-limited growth, the enzyme activity of the cell-free culture supernatant increased with increasing dilution rate only after the critical concentration of enzyme inducer (sucrose) in the chemostat had been achieved. The appearance of fructose in the effluent of the sucrose-limited chemostat at higher dilution rates indicated that sucrose was being diverted to dextran biosynthesis. The competition between bacteria and extracellular enzyme for the common substrate sucrose represents an inefficiency in the system of enzyme production. Dextransucrase was isolated from the cell-free culture supernatant by ammonium sulfate precipitation and DEAE-cellulose chromatography. The enzyme preparation exhibited both dextran biosynthetic activity and an invertase-like activity. The biosynthetic efficiency was increased by decreasing the temperature from 30 to 10 degrees C. The enzyme was irreversibly denatured by prolonged incubation in the absence of Ca2+.  相似文献   

11.
Bacterial profile modification (BPM) is being developed as an oil recovery technique that uses bacteria to selectively plug oil depleted zones within a reservoir to divert displacing fluids (typically water) into oil-rich zones. Leuconostoc mesenteroides, which produces dextran when supplied with sucrose, is a bacterium that is technically feasible for use in profile modification. However, the technique requires controlled bacterial growth to produce selective plugging.A kinetic model for the production of cells and polysaccharides has been developed for L. mesenteroides bacteria. This model, based on data from batch growth experiments, predicts saccharide utilization, cell generation, and dextran production. The underlying mechanism is the extracellular breakdown of sucrose into glucose and fructose and the subsequent production of polysaccharide (dextran). The monosaccharides are then available for growth. Accompanying sucrose consumption is the utilization of yeast extract. The cell requires a complex media that is provided by yeast extract as a source of vitamins and amino acids. Varying the concentration ratio of yeast extract to sucrose in the growth media provides a means of controlling the amount of polymer produced per cell. Consequently, in situ bacteria growth can be controlled by the manipulation of nutrient media composition, thereby providing the ability to create an overall strategy for the use of L. mesenteroides bacteria for profile modification.  相似文献   

12.
The batch production of different exopolysaccharides (alginate, xanthan, pullulan, dextran) by free and immobilized microbial cultures was investigated. First, conventional free-cell cultures were performed to obtain control fermentation parameters and macromolecular characteristics of exopolysaccharides. Then microbial cultures were immobilized in composite agar layer/microporous membrane structures and tested for polysaccharide production. The immobilized-cell system proved unsuitable for xanthan and pullulan production. Owing to the fouling of the microporous membrane by the polysaccharide, dextran production by immobilized Leuconostoc mesenteroides also was inefficient. More promising results have been obtained with immobilized Azotobacter vinelandii cultures. The amount of alginate produced by immobilized A. vinelandii represented about 60% of that recovered from a free-cell culture, whereas the polysaccharide yield reached 35% instead of 9% for the free counterpart. These results are compared to the macromolecular characteristics of exopolysaccharides.  相似文献   

13.
Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was immobilized using two different methods: covalent attachment to activated silica and entrapment in calcium alginate. For immobilization on silica, native enzyme and dextran-free enzyme were compared. However, the entrapment in calcium alginate beads gave the best results in terms of immobilization yield and stability. This biocatalyst was employed in the acceptor reaction with maltose showing similar glucooligosaccharide production than the native enzyme but increased operational stability.  相似文献   

14.
Dextran is a long chain polymer of d-glucose produced by different bacterial strains including Leuconostoc, Streptococcus and Acetobacter. The bacterial cells from Leuconostoc mesenteroides KIBGE HA1 were immobilized on calcium alginate for dextran production. It was observed that dextran production increases as the temperature increases and after reaching maxima (30 °C) production started to decline. It was also observed that at 50 °C free cells stopped producing dextran, while immobilized cells continued to produce dextran even after 60 °C and still not exhausted. It was found that when 10 g% substrate (sucrose) was used, maximum dextran production was observed. Immobilized cells produced dextran upto 12 days while free cells stopped producing dextran only after 03 days. Molecular mass distribution of dextran produced by immobilized cells is low as compared to free cells.  相似文献   

15.
Biotransformations catalyzed by free and immobilized enzymes have been carried out in aqueous suspensions with up to 25% (w/w) precipitated substrate or product. For the kinetically controlled synthesis of N-Acetyl-Tyr-Arg-NH(2) with up to 0.8 M insoluble activated substrate N-Acetyl-TyrOEt catalyzed by alpha-chymotrypsin (EC3.4.21.1) the dipeptide yield was found to be >90%. This and the space-time yields were higher than those observed for one-phase aqueous systems and much higher than in systems where the insoluble substrate had been solubilized by addition of organic solvents. In the equilibrium controlled hydrolysis of 0.4 M D-phenylglycine-amide catalyzed by immobilized penicillin amidase (EC 3.5.1.11) the product precipitates. The enzyme immobilized in the support with the smallest pores could be reused without reduction in the rate due to precipitation in the pores. This decreases the number of immobilized enzyme molecules that can be used as biocatalysts. The latter was observed for supports with larger pores as the solubility decreases with increasing particle size. These results demonstrate that biotransformations with insoluble substrates or products using free or immobilized enzymes can be easily carried out in aqueous two-phase systems, without organic solvents, provided that the pore sizes of the supports are sufficiently small and that the rate of mass transfer from the precipitated substrate is large. The latter increases with decreasing particle size. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
When grown in glucose or fructose medium in the absence of sucrose, Leuconostoc mesenteroides NRRL B-1299 produces two distinct extracellular dextransucrases named glucose glucosyltransferase (GGT) and fructose glucosyltransferase (FGT). The production level of GGT and FGT is 10 to 20 times lower than that of the extracellular dextransucrase sucrose glucosyltransferase (SGT) produced on sucrose medium (traditional culture conditions). GGT and FGT were concentrated by ultrafiltration before sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Their molecular masses were 183 and 186 kDa, respectively, differing from the 195 kDa of SGT. The structural analysis of the dextran produced from sucrose and of the oligosaccharides synthesized by acceptor reaction in the presence of maltose showed that GGT and FGT are two different enzymes not previously described for this strain. The polymer synthesized by GGT contains 30% alpha(1-->2) linkages, while FGT catalyzes the synthesis of a linear dextran only composed of alpha(1-->6) linkages.  相似文献   

17.
Four silica supports differing in pore dimensions were activated by treatment with SiCl4 and then with ethylenediamine to obtain alkylamine groups on the silica surface. Three enzymes, peroxidase from cabbage, glucoamylase from Aspergillus niger C and urease from soybean were immobilized on these supports using glutaraldehyde as coupling agent. It was found that the protein content, the retained enzymatic activity and the storage stability of the silica supported enzymes were considerably affected by support pore size and enzyme molecular weight, the factors which are supposed to alter protein distribution inside the support pores. The highest activity was found for peroxidase and glucoamylase attached to the silica with the widest pores, but their loss in activity during storage was considerable. The urease retained less activity after immobilization, but its storage stability was excellent.  相似文献   

18.
The role of functionalized alginate gels as immobilized matrices in production of l (+) lactic acid by Lactobacillus delbrueckii was studied. L. delbrueckii cells immobilized in functionalized alginate beads showed enhanced bead stability and selectivity towards production of optically pure l (+) lactic acid in higher yields (1.74Yp/s) compared to natural alginate. Palmitoylated alginate beads revealed 99% enantiomeric selectivity (ee) in production of l (+) lactic acid. Metabolite analysis during fermentation indicated low by-product (acetic acid, propionic acid and ethanol) formation on repeated batch fermentation with functionalized immobilized microbial cells. The scanning electron microscopic studies showed dense entrapped microbial cell biomass in modified immobilized beads compared to native alginate. Thus the methodology has great importance in large-scale production of optically pure lactic acid.  相似文献   

19.
Enabling multienzyme biocatalysis using nanoporous materials   总被引:5,自引:0,他引:5  
Multistep reactions catalyzed by a covalently immobilized enzyme-cofactor-enzyme system were achieved. Lactate dehydrogenase (LDH), glucose dehydrogenase (GDH), and cofactor NADH were incorporated into two porous silica glass supports. One of the glass supports had pores of 30 nm in diameter, while the other was of 100-nm pore size. Effective shuttling of the covalently bound NADH between LDH and GDH was achieved, such that regeneration cycles of NADH/NAD(+) were observed. The glass of 30-nm pore size afforded enzyme activities that were about twice those observed for the glass of 100-nm pore size, indicating the former provided better enzyme-cofactor integration. The effect of the size of spacers was also examined. The use of longer spacers increased the reaction rates by approximately 18 times as compared to those achieved with glutaraldehyde linkage. It appeared that the concave configuration of the nanopores played an important role in enabling the multistep reactions. The same multienzyme system immobilized on nonporous polystyrene particles of 500-nm diameter was only approximately 2% active as the glass-supported system. It is believed that the nanoporous structure of the glass supports enhances the molecular interactions among the immobilized enzymes and cofactor, thus improving the catalytic efficiency of the system.  相似文献   

20.
Immobilized enzyme catalyzed biotransformations involving macromolecular substrates and/or products are greatly retarded due to slow diffusion of large substrate molecules in and out of the typical enzyme supports. Slow diffusion of macromolecules into the matrix pores can be speeded up by use of macroporous supports as enzyme carriers. Depolymerization reactions of polysaccharides like starch, pectin, and dextran to their respective low molecular weight products are some of the reactions that can benefit from use of such superporous matrices. In the present work, an indigenously prepared rigid cross-linked cellulose matrix (called CELBEADS) has been used as support for immobilizing alpha amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1.) and pectinase (endo-PG: poly(1,4-alpha-galactouronide) glycanohydrolase, EC 3.2.1.15). The immobilized enzymes were used for starch and pectin hydrolysis respectively, in batch, packed bed and expanded bed modes. The macroporosity of CELBEADS was found to permit through-flow and easy diffusion of substrates pectin and starch to enzyme sites in the porous supports and gave reaction rates comparable to the rates obtained using soluble enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号