首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing soybean seeds contain phosphoenolpyruvate (PEP) carboxylase,pyruvic kinase, malate dehydrogenase, aspartate aminotransferase,alanine aminotransferase and malic enzyme activities. PEP carboxylasemay be important in competing with pyruvic kinase and directinga portion of glycolytic carbon towards oxaloacetate synthesis.The oxaloacetate can then be converted to aspartate and malate.Malic enzyme produces pyruvate and NADPH from malate, and thismay be an important additional source of reducing power forlipid biosynthesis. In the presence of high levels of PEP carboxylaseit is possible to demonstrate PEP formation by pyruvic kinase.PEP carboxylase and pyruvic kinase independently compete forPEP in a mixed system. Soybean seed extracts readily convertedradioactive PEP into alanine and aspartate when supplementedwith ADP, Mg2+, K+, HCO3– and glutamate. Under varyingconditions of pH, metal ions, PEP, enzyme concentration andtime both alanine and aspartate were always produced. Possiblythe final products of glycolysis should be considered as pyruvateand oxaloacetate in plants. (Received April 22, 1981; Accepted June 26, 1981)  相似文献   

2.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

3.
Previous attempts to account for the labelling in vivo of liver metabolites associated with the citrate cycle and gluconeogenesis have foundered because proper allowance was not made for the heterogeneity of the liver. In the basal state (anaesthetized after 24h starvation) this heterogeneity is minimal, and we show that labelling by [14C]bicarbonate can be interpreted unambiguously. [14C]Bicarbonate was infused to an isotopic steady state, and measurements were made of specific radioactivities of blood bicarbonate, alanine, glycerol and lactate, of liver alanine and lactate, and of individual carbon atoms in blood glucose and liver aspartate, citrate and malate. (Existing methods for several of these measurements were extensively modified.) The results were combined with published rates of gluconeogenesis, uptake of gluconeogenic precursors by the liver, and citrate-cycle flux, all measured under similar conditions, and with estimates of other rates made from published data. To interpret the results, three ancillary measurements were made: the rate of CO2 exchange by phosphoenolpyruvate carboxykinase (PEPCK; EC 4.1.1.32) under conditions that simulated those in vivo; the 14C isotope effect in the pyruvate carboxylase (EC 6.4.1.1) reaction (14C/12C = 0.992 +/- 0.008; S.E.M., n = 8); the ratio of labelling by [2-14C]- to that by [1-14C]-pyruvate of liver glutamate 1.5 min after injection. This ratio, 3.38, is a measure of the disequilibrium in the mitochondria between malate and oxaloacetate. The data were analysed with due regard to experimental variance, uncertainties in values of fluxes measured in vitro, hepatic heterogeneity and renal glucose output. The following conclusions were reached. The results could not be explained if CO2 fixation was confined to pyruvate carboxylase and there was only one, well-mixed, pool of oxaloacetate in the mitochondria. Addition of the other carboxylation reactions, those of PEPCK, isocitrate dehydrogenase (EC 1.1.1.42) and malic enzyme (EC 1.1.1.40), was not enough. Incomplete mixing of mitochondrial oxaloacetate had to be assumed, i.e. that there was metabolic channelling of oxaloacetate formed from pyruvate towards gluconeogenesis. There was some evidence that malate exchange across the mitochondrial membrane might also be channelled, with incomplete mixing with that in the citrate cycle. Calculated rates of exchange of CO2 by PEPCK were in agreement with those measured in vitro, with little or no activation by Fe2+ ions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Fatty acid synthesis via the citrate cleavage pathway requires the continual replenishment of oxaloacetate within the mitochondria, probably by carboxylation of pyruvate. Malic enzyme, although present in adipose tissue, is completely localized in the cytoplasm and has insufficient activity to support lipogenesis. Pyruvate carboxylase was found to be active in both the mitochondria and cytoplasm of epididymal adipose tissue cells; it was dependent on both ATP and biotin. Alteractions in dietary conditions induced no significant changes in mitochondrial pyruvate carboxylase activity, but the soluble activity was depressed in fat-fed animals. The possible importance of the soluble activity in lipogenesis lies in its participation in a soluble malate transhydrogenation cycle with NAD malate dehydrogenase and malic enzyme, whereby a continual supply of NADPH is produced. Consequently, the pyruvate carboxylase in adipose tissue both generates mitochondrial oxaloacetate for the citrate cleavage pathway and supplies soluble NADPH for the conversion of acetyl-CoA to fatty acid.  相似文献   

5.
Several key enzymes related to carbohydrate metabolism were assayed in Setaria digitata. In the cytosolic fraction pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, malic enzyme, aspartate transaminase and alanine transaminase were found. Among the TCA cycle enzymes succinate dehydrogenase, fumarate reductase, fumarase (malate dehydration), malate dehydrogenase (malate oxidation and oxaloacetate reduction) and malic enzyme (malate decarboxylation) were detected in the mitochondrial fraction. Only reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase, NADH oxidase and NADH-cytochrome c reductase were found in the mitochondrial fraction. The significance of these results with respect to the metabolic capabilities of the worm are discussed.  相似文献   

6.
In isolated hepatocytes from normal fed rats, the subcellular distribution of malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH has been determined by a modified digitonin method. Incubation with various substrates (lactate, pyruvate, alanine, oleate, oleate plus lactate, ethanol and aspartate) markedly changed the total cellular amounts of metabolites, but their distribution between the cytosolic and mitochondrial compartments was kept fairly constant. In the presence of lactate, pyruvate or alanine, about 90% of cellular aspartate, malate and oxaloacetate, and 50% of citrate was located in the cytosol. The changes in acetyl-CoA in the cytosol were opposite to those in the mitochondrial space, the sum of both remaining nearly constant. The mitochondrial acetyl-CoA/CoASH ratio ranged from 0.3-0.9 and was positively correlated with the rate of ketone body formation. The mitochondrial/cytosolic (m/c) concentration gradients for malate, citrate, 2-oxoglutarate, glutamate, aspartate, oxaloacetate, acetyl-CoA and CoASH averaged from hepatocytes under different substrate conditions were determined to be 1.0, 8.8, 1.6, 2.2, 0.5, 0.7, 13 and 40, respectively. From the distribution of citrate, a pH difference of 0.3 across the inner mitochondrial membrane was calculated, yet lower values resulted from the m/c gradients of 2-oxoglutarate, glutamate and malate. The mass action ratios for citrate synthase and mitochondrial aspartate aminotransferase have been calculated from the metabolite concentrations measured in the mitochondrial pellet fraction. A comparison with the respective equilibrium constants indicates that in intact hepatocytes, neither enzyme maintains its reactants at equilibrium. On the assumption that mitochondrial malate dehydrogenase and 3-hydroxybutyrate dehydrogenase operate near equilibrium, the concentration of free oxaloacetate appears to be 0.3-2 micron, depending on the substrate used. Plotting the calculated free mitochondrial oxaloacetate concentration against the citrate concentration measured in the mitochondrial pellet yielded a hyperbolic saturation curve, from which an apparent Km of citrate synthase for oxaloacetate in the intact cells of 2 micron can be derived, which is comparable to the value determined with purified rat liver citrate synthase. The results are discussed with respect to the supply of substrates and effectors of anion carriers and of key enzymes of the tricarboxylic acid cycle and fatty acid biosynthesis.  相似文献   

7.
In order to gain a first insight into the alternative oxidase (AO) function in durum wheat mitochondria (DWM), we investigated some activation pathways of this enzyme in DWM purified from both etiolated shoots and green leaves. AO was activated when DWM were added with either pyruvate, known as an AO activator in other plant mitochondria, or alanine plus 2-oxoglutarate, which can generate intramitochondrial pyruvate and glutamate via transamination. In contrast, no AO activity was observed during oxidation of malate plus glutamate or succinate (which can generate malate). In this regard DWM differ from other plant mitochondria. Moreover, DWM were found: (i) to have a very low malic enzyme (ME) activity, (ii) to release oxaloacetate rather than pyruvate during malate oxidation and (iii) to poorly oxidise malate in the absence of glutamate, which removes oxaloacetate via transamination. Therefore, we show that, unlike other plant mitochondria, no pyruvate is generated inside DWM from malate via ME, allowing no AO activity. Other AO activators, alternative to pyruvate, were checked by evaluating the capability of several compounds to induce oxygen uptake and/or electrical membrane potential (Delta Psi) in cyanide-treated DWM. Hydroxypyruvate and glyoxylate, photorespiratory cycle intermediates, were found to be powerful AO activators, capable of inducing a maximal rate of cyanide-insensitive oxygen uptake 1.7 times and 2.3 times higher than pyruvate, respectively. These results suggest that in durum wheat a link may exist between AO activity and photorespiratory metabolism rather than malate metabolism. Moreover, we observed that AO activation resulted in both a partially coupled respiration and a reduction by half of the rate of superoxide anion generation; therefore, AO is expected to work as an antioxidative defence system when the photorespiratory cycle is highly active, as under environmental stress.  相似文献   

8.
1) The oxygen consumption increases during Bufo bufo development in accordance with the two steps which border at the "heart beat" stage. 2) Cytochrome c oxidase activity is not proportional to the oxygen consumption: it is notable and constant in the first step, and it only increases in the second. 3) In the mitochondria of preneural embryos, citrate synthase, NADP+ dependent isocitrate dehydrogenase, and succinate dehydrogenase activities are very low in respect to malate dehydrogenase and glutamate oxaloacetate transaminase activities. The Krebs cycle results lowered at the condensing reaction level with acetyl accumulation when pyruvate is available. The same behavior has been observed in the Xenopus laevis oocytes and differentiated tissues. 4) The presence of a phosphagen system which is different from creatine phosphate and arginine phosphate, supporting ATP level, has been demonstrated in B. bufo embryos. 5) Mitochondria of postneural embryos are able to accomplish a complete Krebs cycle by increasing citrate synthase, and succinate dehydrogenase activities. 6) In all B. bufo development, malate dehydrogenase and glutamate oxaloacetate transaminase constitute a multienzymatic system by which the mitochondria accomplish a decarboxylic amino acid shunt required for the transformation of deutoplasm into protoplasm. This shunt is also operative in the X. laevis oocytes. 7) Through pyruvate production, by oxidative decarboxylation of malate, the NAD(P)+ dependent malic enzyme could carry out a fundamental anaplerotic function in the mitochondria which is specialized in the production of biosynthetic blocks belonging to the embryo in which the carbohydrates metabolism rather than the glycolytic activity is designed for pentose phosphate and glycerol phosphate synthesis for protein and cytomembrane production. 8) Consistent metabolic differences have been highlighted between B. bufo embryos and X. laevis embryos.  相似文献   

9.
In lymphocytes of the rat, pyruvate kinase, phosphoenolpyruvate carboxykinase and NADP+-linked malate dehydrogenase (decarboxylating) are distributed almost exclusively in the cytosol whereas pyruvate carboxylase is distributed almost entirely in the mitochondria. For NAD+-linked malate dehydrogenase and aspartate aminotransferase approximately 80% and 40%, respectively, are in the cytosolic compartment. Since glutaminase is present in the mitochondria, glutamine is converted to malate within the mitochondria but further metabolism of the malate is likely to occur in the cytosol. Hence pyruvate produced from this malate, via oxaloacetate and phosphoenolpyruvate carboxykinase, may be rapidly converted to lactate, so restricting the entry of pyruvate into the mitochondria and explaining why very little glutamine is completely oxidised in these cells despite a high capacity of the Krebs cycle.  相似文献   

10.
Lactate Metabolism by Veillonella parvula   总被引:6,自引:2,他引:4       下载免费PDF全文
A strain of Veillonella parvula M4, which grows readily in lactate broth without a requirement for carbon dioxide, has been isolated from the oral cavity. Anaerobic, washed cells of this organism fermented sodium lactate to the following products (moles/100 moles of lactate): propionate, 66; acetate, 40; carbon dioxide, 40; and hydrogen, 14. Cells grew readily in tryptone-yeast extract broth with pyruvate, oxaloacetate, malate, and fumarate, but poorly with succinate. The fermentation of pyruvate, oxaloacetate, or lactate plus oxaloacetate by washed cells resulted in the formation of propionate and acetate in ratios significantly lower than those observed with lactate as the sole carbon source. This was primarily due to increased acetate production. Cell-free extracts were unable to degrade lactate but metabolized lactate in the presence of oxaloacetate, indicating the presence of malic-lactic transhydrogenase in this organism. Lactic dehydrogenase activity was not observed. Evidence is presented for oxaloacetate decarboxylase and malic dehydrogenase activities in extracts.  相似文献   

11.
Activity levels of pyruvate dehydrogenase, enzymes of citric acid cycle, aspartate and alanine aminotransferases were estimated in mitochondria, synaptosomes and cytosol isolated from brains of normal rats and those injected with acute and subacute doses of ammonium acetate. In mitochondria isolated from animals treated with acute dose of ammonium acetate, there was an elevation in the activities of pyruvate, isocitrate and succinate dehydrogenases while the activities of malate dehydrogenase (malateoxaloacetate), aspartate and alanine aminotransferases were suppressed. In subacute conditions a similar profile of change was noticed excepting that there was an elevation in the activity of -ketoglutarate dehydrogenase in mitochondria. In the synaptosomes isolated from animals administered with acute dose of ammonium acetate, there was an increase in the activities of pyruvate, isocitrate, -ketoglutarate and succinate dehydrogenases while the changes in the activities of malate dehydrogenase, asparatate and alanine amino transferases were suppressed. In the subacute toxicity similar changes were observed in this fraction except that the activity of malate dehydrogenase (oxaloacetatemalate) was enhanced. In the cytosol, pyruvate dehydrogenase and other enzymes of citric acid cycle except malate dehydrogenase were enhanced in both acute and subacute ammonia toxicity though their activities are lesser than that of mitochondria. In this fraction malate dehydrogenase (oxaloacetatemalate), was enhanced while activities of malate dehydrogenase (malateoxaloacetate), aspartate, and alanine aminotransferases were suppressed in both the conditions. Based on these results it is concluded that the decreased activities of malate dehydrogenase (malateoxaloacetate) in mitochondria and of aspartate, aminotransferase in mitochondria and cytosol may be responsible for the disruption of malate-aspartate, shuttle in hyperammonemic state. Possible existence of a small vulnerable population of mitochondria in brain which might degenerate and liberate their contents into cytosol in hyperammonemic states is also suggested.  相似文献   

12.
The mechanism of C4 acid decarboxylation was studied in bundle sheath cell strands from Urochloa panicoides, a phosphoenolpyruvate carboxykinase (PCK)-type C4 plant. Added malate was decarboxylated to give pyruvate and this activity was often increased by adding ADP. Added oxaloacetate or aspartate plus 2-oxoglutarate (which produce oxaloacetate via aspartate aminotransferase) gave little metabolic decarboxylation alone but with added ATP there was a rapid production of PEP. For this activity ADP could replace ATP but only when added in combination with malate. In addition, the inclusion of aspartate plus 2-oxoglutarate with malate plus ADP often increased the rate of pyruvate production from malate by more than twofold. Experiments with respiratory chain inhibitors showed that the malate-dependent stimulation of oxaloacetate decarboxylation (PEP production) was probably due to ATP generated during the oxidation of malate in mitochondria. We could provide no evidence that photophosphorylation could serve as an alternative source of ATP for the PEP carboxykinase reaction. We concluded that both PEP carboxykinase and mitochondrial NAD-malic enzyme contribute to C4 acid decarboxylation in these cells, with the required ATP being derived from oxidation-linked phosphorylation in mitochondria.  相似文献   

13.
To gain some insight into the process by which both acetylCoA and NADPH, needed for fatty acid synthesis, are obtained, in the cytosol, from the effluxed intramitochondrial citrate, via citrate lyase and malate dehydrogenase plus malic enzyme respectively, the capability of externally added pyruvate to cause efflux of malate from rat liver mitochondria was tested. The occurrence of a pyruvate/malate translocator is here shown: pyruvate/malate exchange shows saturation features (Km and Vmax values, measured at 20 degrees C and at pH 7.20, were found to be about 0.25 mM and 2.7 nmoles/min x mg mitochondrial protein, respectively) and is inhibited by certain impermeable compounds. This carrier, together with the previously reported tricarboxylate and oxodicarboxylate translocators proved to allow for citrate and oxaloacetate efflux due to externally added pyruvate.  相似文献   

14.
Over a range of concentrations from less than 0.1 mm to more than 70 mm, sweet potato root mitochondria display a bimodal substrate saturation isotherm for malate. The high affinity portion of the isotherm has an apparent Km for malate of 0.85 mm and fits a rectangular hyperbolic function. The low affinity portion of the isotherm is sigmoid in character and gives an apparent S(0.5) of 40.6 mm and a Hill number of 3.7.Extracts of sweet potato mitochondria contain both malate dehydrogenase and NAD malic enzyme. The malate dehydrogenase, assayed in the forward direction at pH 7.2, shows typical Michaelis-Menten kinetics with a Km for malate of 0.38 mm. The NAD malic enzyme shows pronounced sigmoidicity in response to malate with a Hill number of 3.5 and an S(0.5) of 41.6 mm.On the basis of the normal kinetics, the Km, and the fact that oxaloacetate production from malate by mitochondria appears most active at low malate concentrations, the high affinity portion of the malate isotherm with mitochondria is attributed to malate dehydrogenase. The low affinity portion of the malate isotherm with mitochondria is thought, on the basis of the similarity of S(0.5) values, the Hill numbers, and the greater production of pyruvate from malate at high malate concentrations, to represent the activity of the NAD malic enzyme.  相似文献   

15.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

16.
Cell-free extracts of Peptostreptococcus elsdenii, a strict anaerobe from the rumen, were examined for enzymes catalysing the steps in the biosynthesis from lactate of alanine, serine, aspartate and glutamate. Extracts contain the enzymes necessary for the formation of alanine from lactate via pyruvate. The presence of enzymes catalysing the interconversion of phosphoglycerate and phosphohydroxypyruvate, the transamination of the latter to phosphoserine and the cleavage of phosphoserine to serine and inorganic phosphate was demonstrated, suggesting that serine is formed via these intermediates. ;Malic' enzyme, malate dehydrogenase and glutamate-oxaloacetate transaminase are present in extracts and could account for aspartate formation. The extracts catalyse all of the steps of the tricarboxylic acid pathway leading from oxaloacetate plus acetate to glutamate. Together with substantive data from previous radioactive tracer studies the results provide strong evidence that these four amino acids are synthesized in this strict anaerobe by pathways closely similar to those operating in aerobic and facultatively aerobic organisms.  相似文献   

17.
In vivo pyruvate synthesis by malic enzyme (ME) and pyruvate kinase and in vivo malate synthesis by phosphoenolpyruvate carboxylase and the Krebs cycle were measured by 13C incorporation from [1-13C]glucose into glucose-6-phosphate, alanine, glutamate, aspartate, and malate. These metabolites were isolated from maize (Zea mays L.) root tips under aerobic and hypoxic conditions. 13C-Nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry were used to discern the positional isotopic distribution within each metabolite. This information was applied to a simple precursor-product model that enabled calculation of specific metabolic fluxes. In respiring root tips, ME was found to contribute only approximately 3% of the pyruvate synthesized, whereas pyruvate kinase contributed the balance. The activity of ME increased greater than 6-fold early in hypoxia, and then declined coincident with depletion of cytosolic malate and aspartate. We found that in respiring root tips, anaplerotic phosphoenolpyruvate carboxylase activity was high relative to ME, and therefore did not limit synthesis of pyruvate by ME. The significance of in vivo pyruvate synthesis by ME is discussed with respect to malate and pyruvate utilization by isolated mitochondria and intracellular pH regulation under hypoxia.  相似文献   

18.
Control of reversible intracellular transfer of reducing potential.   总被引:1,自引:0,他引:1  
Isolated rat liver mitochondria were incubated in the presence of a reconstituted malate-aspartate shuttle under carboxylating conditions in the presence of glutamate, octanoyl-carnitine and pyruvate, or a preset lactate/pyruvate ratio. The respiration and attendant energy state were varied with soluble F1-ATPase. Under these conditions reducing equivalents are exported due to pyruvate carboxylation. This was shown by lactate production from pyruvate and by a substantial increase in the lactate/pyruvate ratio. This led to a competition between malate export and energy-driven malate cycling via the malate-aspartate shuttle, resulting in a lowered redox segregation of the NAD systems between the mitochondrial and extramitochondrial spaces. If pyruvate carboxylation was blocked, this egress of reducing equivalents was also blocked, leading to an elevated value of redox segregation, delta G(redox) (in kJ) = -5.7 log(NAD+/NADHout)/(NAD+/NADHin) being then equal to approximately one-half of the membrane potential, in accordance with electrogenic glutamate/aspartate exchange. Reconstitution of malate-pyruvate cycling led to a further kinetic decrease in the original malate-aspartate shuttle-driven value of delta G(redox). Therefore, the value of segregation of reducing potential between mitochondria and cytosol caused by glutamate/aspartate exchange can be diminished kinetically by processes exporting reducing equivalents from mitochondria, such as pyruvate carboxylation and pyruvate cycling.  相似文献   

19.
The 13C primary kinetic isotope effect on the decarboxylation of malate by nicotinamide adenine dinucleotide malic enzyme from Crassula argentea is 1.0199 +/- 0.0006 with proteo L-malate-2-H and 1.0162 +/- 0.0003 with malate-2-d. The primary deuterium isotope effect is 1.45 +/- 0.10 on V/K and 1.93 +/- 0.13 on Vmax. This indicates a stepwise conversion of malate to pyruvate and CO2 with hydride transfer preceding decarboxylation, thereby suggesting a discrete oxaloacetate intermediate. This is in agreement with the stepwise nature of the chemical mechanism of other malic enzymes despite the Crassula enzyme's inability to reduce or decarboxylate oxaloacetate. Differences in morphology and allosteric regulation between enzymes suggest specialization of the Crassula malic enzyme for the physiology of crassulacean acid metabolism while maintaining the catalytic events found in malic enzymes from animal sources.  相似文献   

20.
1. In contrast to mammalian skeletal muscle mitochondria, the only substrate that crustacean and fish mitochondria oxidize at a high rate is malate. 2. The mitochondria isolated from muscles of fish and crayfish exhibit a high activity of malic enzyme. 3. Assuming that malic enzyme is responsible for the conversion of malate to pyruvate in animal muscle, it could be expected that the mitochondria which possess high activity of this enzyme should oxidize malate very rapidly when oxygen is available. 4. Some properties of different molecular forms of malic enzyme are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号