首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
External biotin greatly stimulates bacterial growth and alfalfa root colonization by Sinorhizobium meliloti strain 1021. Several genes involved in responses to plant-derived biotin have been identified in this bacterium, but no genes required for biotin transport are known, and not all loci required for biotin synthesis have been assigned. Searches of the S. meliloti genome database in combination with complementation tests of Escherichia coli biotin auxotrophs indicate that biotin synthesis probably is limited in S. meliloti 1021 by the poor functioning or complete absence of several key genes. Although several open reading frames with significant similarities to genes required for synthesis of biotin in gram-positive and gram-negative bacteria were found, only bioB, bioF, and bioH were demonstrably functional in complementation tests with known E. coli mutants. No sequence or complementation evidence was found for bioA, bioC, bioD, or bioZ. In contrast to other microorganisms, the S. meliloti bioB and bioF genes are not localized in a biotin synthesis operon, but bioB is cotranscribed with two genes coding for ABC transporter-like proteins, designated here bioM and bioN. Mutations in bioM and bioN eliminated growth on alfalfa roots and reduced bacterial capacity to maintain normal intracellular levels of biotin. Taken together, these data suggest that S. meliloti normally grows on exogenous biotin using bioM and bioN to conserve biotin assimilated from external sources.  相似文献   

2.
To develop the infrastructure for biotin production through naturally biotin-auxotrophic Corynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribed bioBF genes of Escherichia coli were introduced into the C. glutamicum genome, which originally lacked the bioF gene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), the bioI gene of Bacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of the de novo synthesis of biotin. On the other hand, the bioY gene responsible for biotin uptake was disrupted in wild-type C. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, the bioY disruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioY strain showed a similar high requirement for the precursor dethiobiotin, a substrate for bioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, the bioB gene was further disrupted in both the wild-type strain and the ΔbioY strain. By selectively using the resulting two strains (ΔbioB and ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph of C. glutamicum produced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).  相似文献   

3.
The soil bacterium Sinorhizobium meliloti establishes nitrogen-fixing symbiosis with its leguminous host plant, alfalfa, following a series of continuous signal exchanges. The complexity of the changes of alfalfa root structures during symbiosis and the amount of S. meliloti genes with unknown functions raised the possibility that more S. meliloti genes may be required for early stages of the symbiosis. A positive functional screen of the entire S. meliloti genome for symbiotic genes was carried out using a modified in vivo expression technology. A group of genes and putative genes were found to be expressed in early stages of the symbiosis, and 23 of them were alfalfa root exudate inducible. These 23 genes were further separated into two groups based on their responses to apigenin, a known nodulation (nod) gene inducer. The group of six genes not inducible by apigenin included the lsrA gene, which is essential for the symbiosis, and the dgkA gene, which is involved in the synthesis of cyclic β-1,2-glucan required for the S. meliloti-alfalfa symbiosis. In the group of 17 apigenin-inducible genes, most have not been previously characterized in S. meliloti, and none of them belongs to the nod gene family. The identification of this large group of alfalfa root exudate-inducible S. meliloti genes suggests that the interactions in the early stages of the S. meliloti and alfalfa symbiosis could be complex and that further characterization of these genes will lead to a better understanding of the symbiosis.  相似文献   

4.
Zhao H  Li M  Fang K  Chen W  Wang J 《PloS one》2012,7(2):e31287

Background

Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021.

Results

Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition.

Conclusions

As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.  相似文献   

5.
Sinorhizobium meliloti can form a nitrogen-fixing symbiotic relationship with alfalfa after bacteria in the soil infect emerging root hairs of the growing plant. To be successful at this, the bacteria must be able to survive in the soil between periods of active plant growth, including when conditions are dry. The ability of S. meliloti to withstand desiccation has been known for years, but genes that contribute to this phenotype have not been identified. Transposon mutagenesis was used in combination with novel screening techniques to identify four desiccation-sensitive mutants of S. meliloti Rm1021. DNA sequencing of the transposon insertion sites identified three genes with regulatory functions (relA, rpoE2, and hpr) and a DNA repair gene (uvrC). Various phenotypes of the mutants were determined, including their behavior on several indicator media and in symbiosis. All of the mutants formed an effective symbiosis with alfalfa. To test the hypothesis that UvrC-related excision repair was important in desiccation resistance, uvrA, uvrB, and uvrC deletion mutants were also constructed. These strains were sensitive to DNA damage induced by UV light and 4-NQO and were also desiccation sensitive. These data indicate that uvr gene-mediated DNA repair and the regulation of stress-induced pathways are important for desiccation resistance.  相似文献   

6.
Reduction in crop yield and contamination of food crops are major problems in many areas due to high soil arsenic content. In this study an aquaglyceroporin (AqpS) disrupted Sinorhizobium meliloti smk956 strain was found to accumulate 70.5% more arsenic than its parental strain S. meliloti Rm1021 under free living condition. This strain was inoculated onto alfalfa host plants under different arsenic concentrations (0, 1 and 5 mg/L) and its ability to alleviate arsenic toxicity in the host plant was investigated. At 1 and 5 mg/L arsenic concentrations the average arsenic contents in the shoots of the plants inoculated with the strain S. meliloti smk956 were 45.5 and 27.5% less than those of the plants inoculated with S. meliloti Rm1021, respectively. Under arsenic stress conditions the strain S. meliloti smk956 showed increased symbiotic efficiency than its parental strain. These results demonstrate a novel method to alleviate arsenic toxicity in alfalfa plants.  相似文献   

7.
Stachydrine, a betaine released by germinating alfalfa seeds, functions as an inducer of nodulation genes, a catabolite, and an osmoprotectant in Sinorhizobium meliloti. Two stachydrine-inducible genes were found in S. meliloti 1021 by mutation with a Tn5-luxAB promoter probe. Both mutant strains (S10 and S11) formed effective alfalfa root nodules, but neither grew on stachydrine as the sole carbon and nitrogen source. When grown in the absence or presence of salt stress, S10 and S11 took up [14C]stachydrine as well as wild-type cells did, but neither used stachydrine effectively as an osmoprotectant. In the absence of salt stress, both S10 and S11 took up less [14C]proline than wild-type cells did. S10 and S11 appeared to colonize alfalfa roots normally in single-strain tests, but when mixed with the wild-type strain, their rhizosphere counts were reduced more than 50% (P ≤ 0.01) relative to the wild type. These results suggest that stachydrine catabolism contributes to root colonization. DNA sequence analysis identified the mutated locus in S11 as putA, and the luxAB fusion in that gene was induced by proline as well as stachydrine. DNA that restored the capacity of mutant S10 to catabolize stachydrine contained a new open reading frame, stcD. All data are consistent with the concept that stcD codes for an enzyme that produces proline by demethylation of N-methylproline, a degradation product of stachydrine.  相似文献   

8.
Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022 bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319 bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395 bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.  相似文献   

9.
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.  相似文献   

10.
Variation in genome size and content is common among bacterial strains. Identifying these naturally occurring differences can accelerate our understanding of bacterial attributes, such as ecological specialization and genome evolution. In this study, we used representational difference analysis to identify potentially novel sequences not present in the sequenced laboratory strain Rm1021 of the nitrogen-fixing bacterium Sinorhizobium meliloti. Using strain Rm1021 as the driver and the type strain of S. meliloti ATCC 9930, which has a genome size ~370 kilobases bigger than that of strain Rm1021, as the tester, we identified several groups of sequences in the ATCC 9930 genome not present in strain Rm1021. Among the 85 novel DNA fragments examined, 55 showed no obvious homologs anywhere in the public databases. Of the remaining 30 sequences, 24 contained homologs to the Rm1021 genome as well as unique segments not found in Rm1021, 3 contained sequences homologous to those published for another S. meliloti strain but absent in Rm1021, 2 contained sequences homologous to other symbiotic nitrogen-fixing bacteria (Rhizobium etli and Bradyrhizobium japonicum), and 1 contained a sequence homologous to a gene in a non-nitrogen-fixing species, Pseudomonas sp. NK87. Using PCR, we assayed the distribution of 12 of the above 85 novel sequences in a collection of 59 natural S. meliloti strains. The distribution varied widely among the 12 novel DNA fragments, from 1.7% to 72.9%. No apparent correlation was found between the distribution of these novel DNA sequences and their genotypes obtained using multilocus enzyme electrophoresis. Our results suggest potentially high rates of gene gain and loss in S. meliloti genomes.  相似文献   

11.

The genome of the nitrogen-fixing soil bacterium Sinorhizobium meliloti does not possess genes for bioremediation of aromatic pollutants. It has the well-known ability to interact specifically with the leguminous alfalfa plant, Medicago sativa. Our previous work has shown enhanced degradation of the nitroaromatic compound 2,4-dinitrotoluene (DNT) when a plasmid containing degradative genes was introduced in it. In this study we report molecular evidence of the transfer of a polychlorinated biphenyl (PCB)-biodegradative plasmid pE43 to S. meliloti strain USDA 1936. Several standard analytical tests and plant growth chamber studies were conducted to test the ability of S. meliloti to degrade 2′,3,4-PCB congener. Alfalfa plant alone was able to degrade 30% of PCBs compared with control. No enhanced dechlorination was noted when alfalfa plant was grown with wild-type S. meliloti, and when alfalfa plant was grown with the S. meliloti electrotransformants (genetically modified) dechlorination of PCBs was more than twice that when alfalfa plant was grown with wild-type S. meliloti. When alfalfa plant was grown with uncharacterized mixed culture (containing nodule formers), almost equally significant PCB degradation was observed. The significance of this work is that the naturally occurring nitrogen-fixing soil bacterium S. meliloti (genetically modified) has the ability to enhance fertility of soil in association with the leguminous alfalfa plant while simultaneously enhancing bioremediation of PCB-contaminated soils. Enhanced bioremediation of PCB and robust alfalfa plant growth was also noted when uncharacterized mixed cultures containing alfalfa plant nodule formers were used.

  相似文献   

12.
《Gene》1996,174(2):251-258
The biotin operon of Erwinia herbicola was cloned and characterized. The operon consists of five genes arranged in the order, bioABFCD. The operon is negatively regulated via the interaction of a proposed biotin repressor with an operator sequence that lies between the bioA and bioB genes. The nucleotide sequences of bioA (7,8-diaminopelargonic acid transferase), bioB (biotin synthetase) and the regulatory region were determined and analyzed. The deduced amino acid sequences of bioA and bioB are also aligned with currently available homologs to obtain the UPGMA (unweighted pair group method with arithmetic mean) evolutionary tree.  相似文献   

13.
It was found that S. meliloti strain SmA818, which is cured of pSymA, could not grow on defined medium containing only formate and bicarbonate as carbon sources. Growth experiments showed that Rm1021 was capable of formate/bicarbonate-dependent growth, suggesting that it was capable of autotrophic-type growth. The annotated genome of S. meliloti Rm1021 contains three formate dehydrogenase genes. A systematic disruption of each of the three formate dehydrogenase genes, as well as the genes encoding determinants of the Calvin-Benson-Bassham, cycle was carried out to determine which of these determinants played a role in growth on this defined medium. The results showed that S. meliloti is capable of formate-dependent autotrophic growth. Formate-dependent autotrophic growth is dependent on the presence of the chromosomally located fdsABCDG operon, as well as the cbb operon carried by pSymB. Growth was also dependent on the presence of either of the two triose-phosphate isomerase genes (tpiA or tpiB) that are found in the genome. In addition, it was found that fdoGHI carried by pSymA encodes a formate dehydrogenase that allows Rm1021 to carry out formate-dependent respiration. Taken together, the data allow us to present a model of how S. meliloti can grow on defined medium containing only formate and bicarbonate as carbon sources.  相似文献   

14.
The availability of bacterial genome sequences has created a need for improved methods for sequence-based functional analysis to facilitate moving from annotated DNA sequence to genetic materials for analyzing the roles that postulated genes play in bacterial phenotypes. A powerful cloning method that uses lambda integrase recombination to clone and manipulate DNA sequences has been adapted for use with the gram-negative α-proteobacterium Sinorhizobium meliloti in two ways that increase the utility of the system. Adding plasmid oriT sequences to a set of vehicles allows the plasmids to be transferred to S. meliloti by conjugation and also allows cloned genes to be recombined from one plasmid to another in vivo by a pentaparental mating protocol, saving considerable time and expense. In addition, vehicles that contain yeast Flp recombinase target recombination sequences allow the construction of deletion mutations where the end points of the deletions are located at the ends of the cloned genes. Several deletions were constructed in a cluster of 60 genes on the symbiotic plasmid (pSymA) of S. meliloti, predicted to code for a denitrification pathway. The mutations do not affect the ability of the bacteria to form nitrogen-fixing nodules on Medicago sativa (alfalfa) roots.  相似文献   

15.
Nineteen Tn5-induced mutants of Rhizobium fredii HH303 defective in acidic exopolysaccharide synthesis were isolated by screening for lack of Calcofluor fluorescence. They were grouped by complementation analysis by using Rhizobium meliloti cosmids carrying exo genes. All of the 19 mutants were symbiotically effective or partially effective, indicating that the major bacterial acidic exopolysaccharide of this strain of R. fredii may not be required for symbiotic development in the soybean.  相似文献   

16.
The biotin biosynthesis pathway is an attractive target for development of novel drugs against mycobacterial pathogens, however there are as yet no suitable inhibitors that target this pathway in mycobacteria. 7-Keto-8-aminopelargonic acid synthase (KAPA synthase, BioF) is the enzyme which catalyzes the first committed step of the biotin synthesis pathway, but both its structure and function in mycobacteria remain unresolved. Here we present the crystal structure of Mycobacterium smegmatis BioF (MsBioF). The structure reveals an incomplete dimer, and the active site organization is similar to, but distinct from Escherichia coli 8-amino-7-oxononanoate synthase (EcAONS), the E. coli homologue of BioF. To investigate the influence of structural characteristics on the function of MsBioF, we deleted bioF in M. smegmatis and confirmed that BioF is required for growth in the absence of exogenous biotin. Based on structural and mutagenesis studies, we confirmed that pyridoxal 5′-phosphate (PLP) binding site residues His129, Lys235 and His200 are essential for MsBioF activity in vivo and residue Glu171 plays an important, but not essential role in MsBioF activity. The N-terminus (residues 1–37) is also essential for MsBioF activity in vivo. The structure and function of MsBioF reported here provides further insights for developing new anti-tuberculosis inhibitors aimed at the biotin synthesis pathway.  相似文献   

17.
Auxotrophic mutants have played an important role in the genetic dissection of biosynthetic pathways in microorganisms. Equivalent mutants have been more difficult to identify in plants. The bio1 auxotroph of Arabidopsis thaliana was shown previously to be defective in the synthesis of the biotin precursor 7,8-diaminopelargonic acid. A second biotin auxotroph of A. thaliana has now been identified. Arrested embryos from this bio2 mutant are defective in the final step of biotin synthesis, the conversion of dethiobiotin to biotin. This enzymatic reaction, catalyzed by the bioB product (biotin synthase) in Escherichia coli, has been studied extensively in plants and bacteria because it involves the unusual addition of sulfur to form a thiophene ring. Three lines of evidence indicate that bio2 is defective in biotin synthase production: mutant embryos are rescued by biotin but not dethiobiotin, the mutant allele maps to the same chromosomal location as the cloned biotin synthase gene, and gel-blot hybridizations and polymerase chain reaction amplifications revealed that homozygous mutant plants contain a deletion spanning the entire BIO2-coding region. Here we describe how the isolation and characterization of this null allele have provided valuable insights into biotin synthesis, auxotrophy, and gene redundancy in plants.  相似文献   

18.
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.  相似文献   

19.
An improved instant and convenient biotin bioassay method using lyophilized cells of Lactobacillus plantarum and glycerol-suspended cells of Saccharomyces cerevisiae were established. In addition, a new biotin bioassay method with a bioB mutant strain (C 162) of Escherichia coli was established. Polyvinyl pyrrolidone solution was effective as the suspending medium for lyophilization or glycerol suspension of the cells. Satisfactory standard curves were obtained by the paper disk method and turbidimetric method with lyophilized cells of L. plantarum and E. coli C 162 and glycerol-suspended cells of S. cerevisiae. These lyophilized or glycerol-suspended cells, which were preserved at −20°C, could be used for the assay for more than one year.  相似文献   

20.
A successful symbiotic relationship between Sinorhizobium meliloti and its host Medicago sativa (alfalfa) depends on several signaling mechanisms, such as the biosynthesis of exopolysaccharides (EPS) by S. meliloti. Previous work in our laboratory has shown that a quorum-sensing mechanism controls the production of the symbiotically active EPS II. Recent microarray analysis of the whole-genome expression profile of S. meliloti reveals that the ExpR/Sin quorum-sensing system regulates additional physiological processes that include low-molecular-weight succinoglycan production, nitrogen utilization, metal transport, motility, and chemotaxis. Nearly half of the flagellar genes and their dependence on quorum sensing are prominently displayed in our microarray analyses. We extend those observations in this work and confirm the findings by real-time PCR expression analysis of selected genes, including the flaF, flbT, flaC, cheY1, and flgB genes, involved in motility and chemotaxis. These genes code for regulators of flagellum synthesis, the chemotactic response, or parts of the flagellar apparatus. Gene expression analyses and visualization of flagella by electron microscopy performed at different points in the growth phase support our proposed model in which quorum sensing downregulates motility in S. meliloti. We demonstrate that the ExpR/Sin quorum-sensing system controls motility gene expression through the VisN/VisR/Rem relay. We also show that the ExoS-dependent two-component system suppresses motility gene expression through VisN and Rem in parallel to quorum sensing. This study contributes to our understanding of the mechanisms that govern motility in S. meliloti.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号