首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
To investigate the role of guanosine 3':5'-monophosphate (cyclic GMP) in cultured cells we have measured guanylate cyclase and cyclic GMP phosphodiesterase activities and cyclic GMP levels in normal and transformed fibroblastic cells. Guanylate cyclase activity is found almost exclusively in the particulate fraction of normal rat kidney (NRK) and BALB 3T3 cells. Enzyme activity is stimulated 3- to 10-fold by treatment with the detergent Lubrol PX. However, enhancement of guanylate cyclase by fibroblast growth factor could not be demonstrated under a variety of assay conditions. In both NRK and BALB 3T3 cells guanylate cyclase activity is low during logarithmic growth and increases as the cells crowd together and growth slows. Guanylate cyclase activity is undetectable in homogenates of NRK cells transformed by the Kirsten sarcoma virus (KNRK cells) either in the presence or absence of Lubrol PX. Guanylate cyclase activity is also greatly decreased in NRK cells transformed by Moloney, Schmidt-Ruppin, or Harvey viruses. BALB 3T3 cells transformed by RNA viruses (Kirsten, Harvey, or Moloney), by a DNA virus (SV40), by methylcholanthrene, or spontaneously, all have diminished but readily detectable guanylate cyclase activity. Cyclic GMP phosphodiesterase activity is found predominately in the soluble fraction of NRK cells. This activity increases slightly as NRK cells enter the stationary growth phase. Cyclic GMP phosphodiesterase activity is undetectable in two clones of KNRK cells under a variety of assay conditions, and is decreased relative to the level present in NRK cells in a third KNRK clone. However, both Moloney- and Schmidt-Ruppin-transformed NRK cells have a phosphodiesterase activity similar to that found in NRK cells. Boiled supernatant from both NRK and KNRK cells is observed to appreciably enhance the activity of activator-deficient phosphodiesterase from bovine heart. This result indicates that the absence of cyclic GMP phosphodiesterase activity in KNRK cells is not due to a loss of the phosphodiesterase activator. The intracellular concentration of cyclic GMP is found to be very low in transformed NRK cells when compared to levels measured in confluent NRK cells. The low levels of cyclic GMP in transformed NRK cells reflect the greatly decreased guanylate cyclase activity observed in these cells. These results do not appear to support the suggestion that cyclic GMP promotes the growth of fibroblastic cells.  相似文献   

2.
Pyruvate increased cyclic GMP levels in rat hepatocytes. The effects were observed without or with 1-methyl-3-isobutylxanthine. Lactate, acetate, oxaloacetate, alpha-ketoglutarate, succinate, acetoacetate and beta-hydroxybutyrate also increased cyclic GMP levels. Some compounds increased cyclic GMP in kidney cortex slices. The effects were dependent upon Ca2+ in the medium. Cyclic AMP was increased 30-50% by some of these substances with 2.6 mM Ca2+. Rotenone, oligomycin, antimycin, dinitrophenol, KCN, and arsenate decreased GTP and ATP, basal cyclic GMP and the pyruvate effect, but did not alter cyclic AMP. Although fluoroacetate alone had no effect on cyclic nucleotides, GTP, or ATP, it potentiated the pyruvate effect on cyclic GMP. Adenosine and guanosine increased cyclic GMP and GTP to a similar extent of 30-50%. Aminooxyacetate, cycloserine, pentenoic acid and mepacrine decreased the pyruvate effect while cycloserine or mepacrine alone increased cyclic GMP. Citrate and mepacrine inhibited soluble and particulate guanylate cyclase from rat liver while cycloserine and acetoacetate increased guanylate cyclase activity. None of the other compounds altered guanylate cyclase activity. These results indicate that various metabolites and inhibitors can alter cyclic GMP accumulation in hepatocytes and renal cortex slices. Several mechanisms may be involved in these effects.  相似文献   

3.
The effects on guanylate cyclase and cyclic GMP accumulation of a synthetic peptide containing the amino acid sequence and biological activity of atrial natriuretic factor (ANF) were studied. ANF activated particulate guanylate cyclase in a concentration- and time- dependent fashion in crude membranes obtained from homogenates of rat kidney. Activation of particulate guanylate cyclase by ANF was also observed in particulate fractions from homogenates of rat aorta, testes, intestine, lung, and liver, but not from heart or brain. Soluble guanylate cyclase obtained from these tissues was not activated by ANF. Trypsin treatment of ANF prevented the activation of guanylate cyclase, while heat treatment had no effect. Accumulation of cyclic GMP in kidney minces and aorta was stimulated by ANF activation of guanylate cyclase. These data suggest a role for particulate guanylate cyclase in the molecular mechanisms underlying the physiological effects of ANF such as vascular relaxation, natriuresis, and diuresis.  相似文献   

4.
The subcellular localizations of guanylate cyclase and 3',5'-cyclic nucleotide phosphodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 80% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucleotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

5.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

6.
Twelve hyperglycemic, glycosuric, and ketonuric Djungarian hamsters with average blood glucose concentrations of 295+-32 mg/dl were compared to twelve non-glycosuric, but ketonuric Djungarian hamsters with average blood glucose concentrations of 88+-11 mg/dl with regards to their cyclic nucleotide metabolism. The glycosuric Djungarian hamsters had decreased guanylate cyclase (E.C.4.6.1.2.) activity in vitro and cyclic GMP levels in vivo in liver, lung, kidney, colon, heart, spleen, and pancreas that was approximately 50% of the guanylate cyclase activity in these same tissues of non-glycosuric Djungarian hamsters. The decreased tissue guanylate cyclase activity and cyclic GMP levels in the glycosuric animals could be restored to the level of non-glycosuric Djungarian hamsters with 100 U regular insulin, but not with 50 or 10 U of regular insulin. Fifty and 100 U of regular insulin also increased the level of guanylate cyclase activity in the non-glycosuric (control) animals. There was no change in adenylate cyclase (E.C.4.6.1.1.) activity but there were increased cyclic AMP levels in the glycosuric when compared to the non-glycosuric Djungarian hamsters that were correctable with 100 U of insulin. We conclude that guanylate cyclase activity is decreased in the peripheral tissues of glycosuric Djungarian hamsters as compared to non-glycosuric Djungarian hamsters and that insulin modulates this enzyme.  相似文献   

7.
Cyclic nucleotide concentrations and guanylate cyclase activity were measured in regenerating rat liver. Previous work has shown that in livers of partially hepatectomized rats the activity of a membrane-bound guanylate cyclase increases considerably during the early replicative phase [Kimura & Murad (1975) Proc. Natl. Acad. Sci. U.S.A.72, 1965-1969; Goridis & Reutter (1975) Nature (London) 257, 698-700]. Over the same time period after partial hepatectomy, increased tissue concentrations of cyclic GMP were found when the rats were killed under pentobarbital anaesthesia, but not when anaesthesia was omitted. The results obtained on hepatectomized livers were compared with the changes in guanylate cyclase activity and cyclic nucleotide concentrations during the response to galactosamine treatment. Here, a peak of guanylate cyclase activity and of cyclic GMP concentrations occurred at 8h, that is before the beginning of the proliferative response. Both parameters were normal at the time of increased DNA synthesis. There does not, therefore, seem to be a consistent correlation between changes in guanylate cyclase activity or concentrations of cyclic GMP and an increase in liver DNA synthesis. A modest rise in cyclic AMP concentrations was found, however, in livers of galactosamine-treated rats, which was coincident with the time of DNA synthesis.  相似文献   

8.
The biochemical characteristics of rat testicular guanylate cyclase were investigated and the activity and subcellular distribution of the enzyme was determined during testicular development. Examination of the effects of metal ions, nucleotides, detergents and other in vitro activators on the activity of guanylate cyclase revealed that the testicular enzyme is similar in most respects to guanylate cyclase isolated from other mammalian tissues. Changes in the total activity of guanylate cyclase during testicular development paralleled changes in the tissue concentration of cyclic GMP; i.e. guanylate cyclase activity and tissue cyclic GMP were highest during the early stages of development. Subcellular fractionation revealed that the activity of the soluble form of guanylate cyclase was best correlated with tissue cyclic GMP. Biochemical analysis of the soluble enzyme prepared from testes of neonatal and adult rats did not reveal any significant differences in the characteristics of the enzyme during ontogeny with the exception of a 2.5 fold increase in V noted in the neonatal testis. The results of this study are consistent with a molecular mechanism that allows independent regulation of the different forms of guanylate cyclase.  相似文献   

9.
The subcellular localizations of guanylate cyclase and 3′,5′-cyclic nucleotide phophodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 980% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucelotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

10.
D L Vesely  D C Lehotay  G S Levey 《Enzyme》1978,23(5):356-360
The nucleotide cyclic GMP has been reported to be involved in cell proliferation and malignant transformation. Nitroso chemical carcinogens activate the enzyme guanylate cyclase (EC 4.6.1.2) which catalyzes the production of cyclic GMP. The present investigation demonstrates that compounds from other major classes of carcinogens including (1) alpha-halo ethers (chloromethyl methyl ether); (2) aromatic amines (benzidine and B-naphthylamine); (3) polycyclic hydrocarbons (1,2-benzanthracene and acridine); (4) azo dyes (p-dimethylaminoazobenzene), and (5) aflatoxins (B1, B2, G1, G2) produced a striking and significant inhibition of guanylate cyclase over a general concentration range of 0.5-13 mmol/1 in a variety of tissues. Some of the nitrosamides which increase guanylate cyclase activity, increase DNA synthesis whereas carcinogens which decrease guanylate cyclase activity inhibit DNA or RNA synthesis suggesting a relationship between cyclic GMP, DNA synthesis, and chemical carcinogenesis.  相似文献   

11.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

12.
Sperm from several invertebrates contained guanylate cyclase activity several-hundred-fold greater than that in the most active mammalian tissues; the enzyme was totally particulate. Activity in the presence of Mn2+ was up to several hundred-fold greater than with Mg2+ and was increased 3–10-fold by Triton X-100. Sperm from several vertebrates did not contain detectable guanylate cyclase. Sperm of both invertebrates and vertebrates contained roughly equal amounts of Mn2+-dependent adenylate cyclase activity; in invertebrate sperm, this enzyme was generally several hundred-fold less active than guanylate cyclase. Adenylate cyclase was particulate, was unaffected by fluoride, and was generally greater than 10-fold more active with Mn2+ than with Mg2+. Invertebrate sperm contained phosphodiesterase activities against 1.0 μm cyclic GMP or cyclic AMP in amounts greater than mammalian tissues. Fish sperm, which did not contain guanylate cyclase, had high phosphodiesterase activity with cyclic AMP as substrate but hydrolyzed cyclic GMP at a barely detectable rate. In sea urchin sperm, phosphodiesterase activity against cyclic GMP was largely particulate and was strongly inhibited by 1.0% Triton X-100. In contrast, activity against cyclic AMP was largely soluble and was weakly inhibited by Triton. The cyclic GMP and cyclic AMP contents of sea urchin sperm were in the range of 0.1–1 nmol/g. Sea urchin sperm homogenates possessed protein kinase activity when histone was used as substrate; activities were more sensitive to stimulation by cyclic AMP than by cyclic GMP.5  相似文献   

13.
The increase in intracellular cyclic GMP concentrations in response to muscarinic-receptor activation in N1E-115 neuroblastoma cells is dependent on extracellular Ca2+ ion. The calcium ionophore A23187 can also evoke an increase in cyclic GMP in the presence of Ca2+ ion. Most (about 85%) of the guanylate cyclase activity of broken-cell preparations is found in the soluble fraction. The soluble enzyme can utilize MnGTP (Km = 55 micrometer), MgGTP (Km = 310 micrometer) and CaGTP (Km greater than 500 micrometer) as substrates. Free GTP is a strong competitive inhibitor (Ki approximately 20 micrometer). The enzyme possesses an allosteric binding site for free metal ions (Ca2+, Mg2+ and Mn2+). The membrane-bound guanylate cyclase is qualitatively similar to the soluble form, but has lower affinity for the metal-GTP substrates. Entry of Ca2+ into cells may increase cyclic GMP concentration by activating guanylate cyclase through an indirect mechanism.  相似文献   

14.
Recently a stimulatory effect of atrial natriuretic peptide (ANP) on the particulate guanylate cyclase system has been reported in the glomeruli from different species. Using cultures of homogeneous human glomerular cell lines, we found that rat and human ANP stimulated markedly cGMP formation in epithelial cells with a threshold dose of 1 nM. A 20-fold increase was obtained at 5 microM. Stimulation was also present but less substantial (2-fold at 5 microM) in mesangial cells. cGMP was formed rapidly and released in the medium. ANP and sodium nitroprusside, an activator of soluble guanylate cyclase, had additive effects on cGMP formation. ANP did not inhibit cAMP formation in both cell lines. These results demonstrate that, at least in the human species, epithelial cells represent the main target of ANP in the glomerulus. Synthesis of cGMP in the glomerular epithelial cells in response to ANP also suggests that the excess of urinary cGMP produced by the kidney which is observed after ANP administration is of glomerular rather than of tubular origin.  相似文献   

15.
The stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity by atrial natriuretic peptide (ANP) was compared to the affinity and number of ANP receptors in eight cultured cell types. At 100 nM, ANP increased cyclic GMP by 13-fold in bovine adrenal cortical, 35-fold in human lung fibroblast, 58-fold in canine kidney epithelial, 60-fold in bovine aortic smooth muscle, 120-fold in rat mammary epithelial, 260-fold in rat Leydig, 300-fold in bovine kidney epithelial, and 475-fold in bovine aortic endothelial cells. ANP (1 microM) increased particulate guanylate cyclase activity by 1.5-, 2.5-, 3.1-, 3.2-, 5.0-, 7.0-, 7.8-, and 8.0-fold in bovine adrenal cortical, bovine aortic smooth muscle, human lung fibroblast, canine kidney epithelial, rat mammary epithelial, rat Leydig, bovine kidney epithelial, and bovine aortic endothelial cells, respectively. Specific 125I-ANP binding to intact rat Leydig (3,000 sites/cell; Kd = 0.11 nM), bovine aortic endothelial (14,000 sites/cell; Kd = 0.09 nM), bovine adrenal cortical (50,000 sites/cell; Kd = 0.12 nM), human lung fibroblast (80,000 sites/cell; Kd = 0.32 nM), and bovine aortic smooth muscle (310,000 sites/cell; Kd = 0.82 nM) cells was saturable and high affinity. No specific and saturable ANP binding was detected in bovine and canine kidney epithelial and rat mammary epithelial cells. Two ANP-binding sites of 66,000 and 130,000 daltons were specifically labeled by 125I-ANP after cross-linking with disuccinimidyl suberate. The 130,000-dalton ANP-binding sites bound to a GTP-agarose affinity column, and the specific activity of guanylate cyclase was increased by 90-fold in this fraction. Our results demonstrate that the increase in cyclic GMP accumulation and particulate guanylate cyclase activity by ANP does not correlate with the affinity and number of ANP-binding sites. These results suggest that multiple populations of ANP receptors exist in these cells and that only one receptor subtype (130,000 daltons) is associated with particulate guanylate cyclase activity.  相似文献   

16.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have examined the tissue spcificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP concentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase inliver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

17.
18.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

19.
Adenylate, guanylate cyclase and protein kinases in a fibrous sarcoma originating from rat prostate have been studied. A decrease in levels of adenosine 3', 5'-monophosphate (cyclic AMP) and adenylate cyclase activities and an increase in levels of guanosine 3',5'-monophosphate (cyclic GMP) and guanylate cyclase activities were observed in the tumor tissue when compared with the normal prostatic tissue of rats. Protein kinases from the tumor and the prostate were both responsive to exogenous cyclic AMP, with an apparent Ka of 0.08 muM in the tumor and of 0.11 muM in the prostate. It is of interest that the protein kinases from the tumor responded to cyclic AMP to the same extent as was observed in the enzyme preparation from the prostate. The protein kinase from the tumor was more sensitive to cyclic GMP than that from the prostate, showing an apparent Ka of 0.88 muM in the tumor and of 4.85 muM in the prostate. This tumor has been characterized with an increase in guanylate cyclase activities with a subsequent rise in cellular cyclic GMP and an increased sensitivity of the protein kinase to cyclic GMP.  相似文献   

20.
Effects of atriopeptin on particulate guanylate cyclase from rat adrenal   总被引:3,自引:0,他引:3  
Atriopeptin II activated particulate guanylate cyclase 5-10-fold in a concentration- and time-dependent fashion in crude membranes obtained from homogenates of rat adrenal cortex or medulla. Similar effects were observed with other atriopeptin analogs. Soluble guanylate cyclase and adenylate cyclase in these preparations were not activated. Accumulation of cyclic GMP in minces of adrenal cortex or medulla was increased 6-8-fold due to atriopeptin II activation of particulate guanylate cyclase. Several thiol-reactive agents blocked the activation of particulate guanylate cyclase, suggesting that free thiol groups on membrane proteins may be important in atriopeptin receptor-guanylate cyclase coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号