首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha-amino acid ester hydrolase from Acetobacter turbidans ATCC 9325 is capable of hydrolyzing and synthesizing the side chain peptide bond in beta-lactam antibiotics. Data base searches revealed that the enzyme contains an active site serine consensus sequence Gly-X-Ser-Tyr-X-Gly that is also found in X-prolyl dipeptidyl aminopeptidase. The serine hydrolase inhibitor p-nitrophenyl-p'-guanidino-benzoate appeared to be an active site titrant and was used to label the alpha-amino acid ester hydrolase. Electrospray mass spectrometry and tandem mass spectrometry analysis of peptides from a CNBr digest of the labeled protein showed that Ser(205), situated in the consensus sequence, becomes covalently modified by reaction with the inhibitor. Extended sequence analysis showed alignment of this Ser(205) with the catalytic nucleophile of some alpha/beta-hydrolase fold enzymes, which posses a catalytic triad composed of a nucleophile, an acid, and a base. Based on the alignments, 10 amino acids were selected for site-directed mutagenesis (Arg(85), Asp(86), Tyr(143), Ser(156), Ser(205), Tyr(206), Asp(338), His(370), Asp(509), and His(610)). Mutation of Ser(205), Asp(338,) or His(370) to an alanine almost fully inactivated the enzyme, whereas mutation of the other residues did not seriously affect the enzyme activity. Circular dichroism measurements showed that the inactivation was not caused by drastic changes in the tertiary structure. Therefore, we conclude that the catalytic domain of the alpha-amino acid ester hydrolase has an alpha/beta-hydrolase fold structure with a catalytic triad of Ser(205), Asp(338), and His(370). This distinguishes the alpha-amino acid ester hydrolase from the Ntn-hydrolase family of beta-lactam antibiotic acylases.  相似文献   

2.
Yau MH  Wang J  Tsang PW  Fong WP 《FEBS letters》2006,580(5):1465-1471
J1 acylase, a glutaryl-7-aminocephalosporanic acid acylase (GCA) isolated from Bacillus laterosporus J1, has been conventionally grouped as the only member of class V GCA, although its amino acid sequence shares less than 10% identity with members of other classes of GCA. Instead, it shows higher sequence similarities with Rhodococcus sp. strain MB1 cocaine esterase (RhCocE) and Acetobacter turbidans alpha-amino acid ester hydrolase (AtAEH), members of the alpha/beta-hydrolase fold superfamily. Homology modeling and secondary structure prediction indicate that the N-terminal region of J1 acylase has an alpha/beta-hydrolase folding pattern. The catalytic triads in RhCocE and AtAEH were identified in J1 acylase as S125, D264 and H309. Mutations to alanine at these positions were found to completely inactivate the enzyme. These results suggest that J1 acylase is a member of the alpha/beta-hydrolase fold superfamily with a serine-histidine-aspartate catalytic triad.  相似文献   

3.
Abstract The pac gene encoding the penicillin G acylase (PGA) of Bacillus megaterium ATCC 14945 has been cloned in Escherichia coli HB101 ( proA, leuB ) using a selective minimal medium containing phenylacetyl-L-leucine instead of L-leucine. The nucleotide sequence of this gene has been determined and contains an open reading frame of 2406 nucleotides. The deduced amino acid sequence shows significant similarity with other β-lactam acylases. Although the PGA of B. megaterium is extracellular, the enzyme produced in E. coli appears to have a cytoplasmic localization.  相似文献   

4.
Penicillin G acylase was purified from the cultured filtrate of Arthrobacter viscosus 8895GU and was found to consist of two distinct subunits with apparent molecular weights of 24,000 (alpha) and 60,000 (beta). The partial N-terminal amino acid sequences of the alpha and beta subunits were determined with a protein gas phase sequencer, and a 29-base oligonucleotide corresponding to the partial amino acid sequence of the alpha subunit was synthesized. An Escherichia coli transformant having the penicillin G acylase gene was isolated from an A. viscosus gene library by hybridization with the 29-base probe. The resulting positive clone was further screened by the Serratia marcescens overlay technique. E. coli carrying a plasmid designated pHYM-1 was found to produce penicillin G acylase in the cells. This plasmid had an 8.0-kilobase pair DNA fragment inserted in the EcoRI site of pACYC184.  相似文献   

5.
Penicillin G acylase was purified from the cultured filtrate of Arthrobacter viscosus 8895GU and was found to consist of two distinct subunits with apparent molecular weights of 24,000 (alpha) and 60,000 (beta). The partial N-terminal amino acid sequences of the alpha and beta subunits were determined with a protein gas phase sequencer, and a 29-base oligonucleotide corresponding to the partial amino acid sequence of the alpha subunit was synthesized. An Escherichia coli transformant having the penicillin G acylase gene was isolated from an A. viscosus gene library by hybridization with the 29-base probe. The resulting positive clone was further screened by the Serratia marcescens overlay technique. E. coli carrying a plasmid designated pHYM-1 was found to produce penicillin G acylase in the cells. This plasmid had an 8.0-kilobase pair DNA fragment inserted in the EcoRI site of pACYC184.  相似文献   

6.
Alcaligenes faecalis penicillin G acylase is more stable than the Escherichia coli enzyme. The activity of the A. faecalis enzyme was not affected by incubation at 50 degrees C for 20 min, whereas more than 50% of the E. coli enzyme was irreversibly inactivated by the same treatment. To study the molecular basis of this higher stability, the A. faecalis enzyme was isolated and its gene was cloned and sequenced. The gene encodes a polypeptide that is characteristic of periplasmic penicillin G acylase (signal peptide-alpha subunit-spacer-beta subunit). Purification, N-terminal amino acid analysis, and molecular mass determination of the penicillin G acylase showed that the alpha and beta subunits have molecular masses of 23.0 and 62.7 kDa, respectively. The length of the spacer is 37 amino acids. Amino acid sequence alignment demonstrated significant homology with the penicillin G acylase from E. coli A unique feature of the A. faecalis enzyme is the presence of two cysteines that form a disulfide bridge. The stability of the A. faecalis penicillin G acylase, but not that of the E. coli enzyme, which has no cysteines, was decreased by a reductant. Thus, the improved thermostability is attributed to the presence of the disulfide bridge.  相似文献   

7.
对来源于假单胞菌sp.130的戊二酰-7-氨基头孢烷酸(GL-7-ACA)酰化酶结构基因的全序列及所编码蛋白质的α,β亚基的N末端和C末端的氨基酸序列进行了测定。将蛋白质序列与其他同类的GL-7-ACA酰化酶进行了同源性比较,结果显示该酶与来源于假单胞菌GK16和C427的酰化酶的序列有较高同源性,而与其它同类酰化酶的同源性较低。这些酶的α亚基N-末端差别较大,但是β-亚基的N-末端有较高的保守性。  相似文献   

8.
The alpha-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of beta-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as the structures of an inactive mutant (S205A) complexed with the substrate ampicillin, and an active site mutant (Y206A) with an increased tendency to catalyze antibiotic production rather than hydrolysis. The structure of the native enzyme shows an acyl binding pocket, in which D-phenylglycine binds, and an additional space that is large enough to accommodate the beta-lactam moiety of an antibiotic. In the S205A mutant, ampicillin binds in this pocket in a non-productive manner, making extensive contacts with the side chain of Tyr(112), which also participates in oxyanion hole formation. In the Y206A mutant, the Tyr(112) side chain has moved with its hydroxyl group toward the catalytic serine. Because this changes the properties of the beta-lactam binding site, this could explain the increased beta-lactam transferase activity of this mutant.  相似文献   

9.
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.  相似文献   

10.
The paper reports the purification and characterization of the first penicillin acylase from Bacillus subtilis. YxeI, the protein annotated as hypothetical, coded by the gene yxeI in the open reading frame between iol and hut operons in B. subtilis was cloned and expressed in Eshcherichia coli, purified and characterized. The purified protein showed measurable penicillin acylase activity with penicillin V. The enzyme was a homotetramer of 148 kDa. The apparent Km of the enzyme for penicillin V and the synthetic substrate 2-nitro-5-(phenoxyacetamido)-benzoic acid was 40 mM and 0.63 mM, respectively, and the association constants were 8.93 × 102 M−1 and 2.51 × 105 M−1, respectively. It was inhibited by cephalosporins and conjugated bile salts, substrates of the closely related bile acid hydrolases. It had good sequence homology with other penicillin V acylases and conjugated bile acid hydrolases, members of the Ntn hydrolase family. The N-terminal nucleophile was a cysteine which is revealed by a simple removal of N-formyl-methionine. The activity of the protein was affected by high temperature, acidic pH and the presence of the denaturant guanidine hydrochloride.  相似文献   

11.
BACKGROUND: Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), which is usually obtained by chemical deacylation of cephalosporin C (CPC). The chemical production of 7-ACA includes, however, several expensive steps and requires thorough treatment of chemical wastes. Therefore, an enzymatic conversion of CPC to 7-ACA by cephalosporin acylase is of great interest. The biggest obstacle preventing this in industrial production is that cephalosporin acylase uses glutaryl-7ACA as a primary substrate and has low substrate specificity for CPC. RESULTS: We have solved the first crystal structure of a cephalosporin acylase from Pseudomonas diminuta at 2.0 A resolution. The overall structure looks like a bowl with two "knobs" consisting of helix- and strand-rich regions, respectively. The active site is mostly formed by the distinctive structural motif of the N-terminal (Ntn) hydrolase superfamily. Superposition of the 61 residue active-site pocket onto that of penicillin G acylase shows an rmsd in Calpha positions of 1.38 A. This indicates structural similarity in the active site between these two enzymes, but their overall structures are elsewhere quite different. CONCLUSION: The substrate binding pocket of the P. diminuta cephalosporin acylase provides detailed insight into the ten key residues responsible for the specificity of the cephalosporin C side chain in four classes of cephalosporin acylases, and it thereby forms a basis for the design of an enzyme with an improved conversion rate of CPC to 7-ACA. The structure also provides structural evidence that four of the five different classes of cephalosporin acylases can be grouped into one family of the Ntn hydrolase superfamily.  相似文献   

12.
A partially purified preparation of an alpha-amino acid ester hydrolase was obtained from Acetobacter turbidans A.T.C.C. 9325, which catalyses synthesis of 7-(d-alpha-amino-alpha-phenylacetamido)-3-cephem-3-methyl-4- carboxylic acid (cephalexin) from methyl d-alpha-aminophenylacetate and 7-amino-3-deacetoxycephalosporanic acid. The enzyme preparation catalysed both cephalosprin synthesis from 7-amino-3-deacetoxycephalosporanic acid and suitable amino acid esters (e.g. methyl d-alpha-aminophenylacetate, l-cysteine methyl ester, glycine ethyl ester, d-alanine methyl ester, methyl dl-alpha-aminoiso-butyrate, l-serine methyl ester, d-leucine methyl ester, l-methionine methyl ester) and the hydrolysis of such esters. The substrate specificity of the enzyme preparation for the hydrolysis closely paralleled the acyl-donor specificity for cephalosporin synthesis, even to the reaction rates. Only alpha-amino acid derivatives could act as acyl donors. The hydrogen atom on the alpha-carbon atom was not always required by acyl donors. The hydrolysis rate was markedly diminished by adding 7-amino-3-deacetoxycephalosporanic acid to reaction mixtures, but no effect on the total reaction rate (the hydrolysis rate plus synthesis rate) was observed with various concentrations of 7-amino-3-deacetoxycephalosporanic acid. Both the hydrolytic and the synthetic activities of the enzyme preparation were inhibited by high concentrations of some acyl donors (e.g. methyl d-alpha-aminophenylacetate, ethyl d-alpha-aminophenylacetate). The enzyme preparation hydrolysed alpha-amino acid esters much more easily than alpha-amino acid derivatives with an acid-amide bond.  相似文献   

13.
We report on the molecular cloning and characterization of penicillin V acylase (PVA) from an actinomycete, Streptomyces mobaraensis (Sm-PVA), which was originally isolated as an acylase that efficiently hydrolyzes the amide bond of various N-fatty-acyl-l-amino acids and N-fatty-acyl-peptides as well as capsaicin (8-methyl-N-vanillyl-6-nonenamide). In addition, the purified Sm-PVA hydrolyzed penicillin V with the highest activity (k(cat)) among the PVAs so far reported, penicillin G, and 2-nitro-5-phenoxyacetamide benzoic acid. The BLAST search revealed that the Sm-PVA precursor is composed of a polypeptide that is characteristic of enzymes belonging to the beta-lactam acylase family with four distinct segments; a signal sequence (43 amino acids), an alpha subunit (173 amino acids), a linker peptide (28 amino acids), and a beta subunit (570 amino acids). The mature, active Sm-PVA is a heterodimeric protein with alpha and beta subunits, in contrast to PVAs isolated from Bacillus sphaericus and B. subtilis, which have a homotetrameric structure. The amino acid sequence of Sm-PVA showed identities to PVA from S. lavendulae, N-acylhomoserine lactone-degrading acylase from Streptomyces sp., cyclic lipopeptide acylase from Streptomyces sp., and aculeacin A acylase from Actinoplanes utahensis with 68, 67, 67, and 41% identities, respectively.  相似文献   

14.
Cephalosporin acylases are a group of enzymes that hydrolyze cephalosporin C (CPC) and/or glutaryl 7-amino cephalosporanic acid (GL-7ACA) to produce 7-amino cephalosporanic acid (7-ACA). The acylase from Pseudomonas sp. 130 (CA-130) is highly active on GL-7ACA and glutaryl 7-aminodesacetoxycephalosporanic acid (GL-7ADCA), but much less active on CPC and penicillin G. The gene encoding the enzyme is expressed as a precursor polypeptide consisting of a signal peptide followed by alpha- and beta-subunits, which are separated by a spacer peptide. Removing the signal peptide has little effect on precursor processing or enzyme activity. Substitution of the first residue of the beta-subunit, Ser, results in a complete loss of enzyme activity, and substitution of the last residue of the spacer, Gly, leads to an inactive and unprocessed precursor. The precursor is supposed to be processed autocatalytically, probably intramolecularly. The two subunits of the acylase, which separately are inactive, can generate enzyme activity when coexpressed in Escherichia coli. Data on this and other related acylases indicate that the cephalosporin acylases may belong to a novel class of enzymes (N-terminal nucleophile hydrolases) described recently.  相似文献   

15.
Partially purified penicillin acylases (EC 3.5.1.11) were prepared from Pseudomonas melanogenum KY 3987 and Kluyvera citrophila KY 3641 capable of synthesizing d(–)-α-amino-benzylpenicillin (APc) from 6-aminopenicillanic acid (6-APA) and phenylglycine methyl ester. As the cell-free extract of P. melanogenum contained high levels of penicillinase (EC 3.5.2.6), the acylase was separated completely from the penicillinase by use of Sephadex column chromatography or electrofocusing. The most salient property of the P. melanogenum penicillin acylase was its substrate specificity to penicillin substrates: it could form 6-APA only from APc but not from penicillin G, penicillin V and p-aminobenzylpenicillin, whereas the K. citrophila acylase acted on all of these penicillins. The P. melanogenum enzyme is hence considered a novel type of penicillin acylase.  相似文献   

16.
Peptidase family U34 consists of enzymes with unclear catalytic mechanism, for instance, dipeptidase A from Lactobacillus helveticus. Using extensive sequence similarity searches, we infer that U34 family members are homologous to penicillin V acylases (PVA) and thus potentially adopt the N-terminal nucleophile (Ntn) hydrolase fold. Comparative sequence and structural analysis reveals a cysteine as the catalytic nucleophile as well as other conserved residues important for catalysis. The PVA/U34 family is variable in sequence and exhibits great diversity in substrate specificity, to include enzymes such as choloyglycine hydrolases, acid ceramidases, isopenicillin N acyltransferases, and a subgroup of eukaryotic proteins with unclear function.  相似文献   

17.
The gene encoding cephalosporin acylase, which hydrolyzes 7-beta-(4-carboxybutanamido)-cephalosporanic acid (GL-7ACA) to 7-aminocephalosporanic acid (7ACA) and glutaric acid, was cloned from a Pseudomonas sp. strain V22 and expressed in Escherichia coli, in a two-cistron system, and the enzyme was purified and characterized. The purified enzyme was composed of two non-identical subunits, their molecular weights were estimated by SDS-PAGE to be 40,000 and 22,000, and had a pI of 4.6. The amino acid sequence of the enzyme, deduced from the nucleotide sequence, showed high similarity (97%) with that of a previously reported acyI-encoded cephalosporin acylase. Cephalosporin acylase also resembles the bacterial gamma-glutamyl transpeptidases (GGTs) with respect to their molecular organization and amino acid sequence, but differs from them with respect to catalytic and immunological properties. Purified enzyme exhibited not only cephalosporin acylase activity, but also GGT activity. The Km values of the enzyme for GL-7ACA and L-gamma-glutamyl-p-nitroanilide were 6.1 and 3.8 mM, respectively. Cephalosporin acylase was not recognized by antibodies prepared against bacterial GGTs.  相似文献   

18.
Penicillin G acylase is an important enzyme in the commercial production of semisynthetic penicillins used to combat bacterial infections. Mutant strains of Providencia rettgeri were generated from wild-type cultures subjected to nutritional selective pressure. One such mutant, Bro1, was able to use 6-bromohexanamide as its sole nitrogen source. Penicillin acylase from the Bro1 strain exhibited an altered substrate specificity consistent with the ability of the mutant to process 6-bromohexanamide. The X-ray structure determination of this enzyme was undertaken to understand its altered specificity and to help in the design of site-directed mutants with desired specificities. In this paper, the structure of the Bro1 penicillin G acylase has been solved at 2.5 A resolution by molecular replacement. The R-factor after refinement is 0.154 and R-free is 0.165. Of the 758 residues in the Bro1 penicillin acylase heterodimer (alpha-subunit, 205; beta-subunit, 553), all but the eight C-terminal residues of the alpha-subunit have been modeled based on a partial Bro1 sequence and the complete wild-type P. rettgeri sequence. A tightly bound calcium ion coordinated by one residue from the alpha-subunit and five residues from the beta-subunit has been identified. This enzyme belongs to the superfamily of Ntn hydrolases and uses Ogamma of Ser beta1 as the characteristic N-terminal nucleophile. A mutation of the wild-type Met alpha140 to Leu in the Bro1 acylase hydrophobic specificity pocket is evident from the electron density and is consistent with the observed specificity change for Bro1 acylase. The electron density for the N-terminal Gln of the alpha-subunit is best modeled by the cyclized pyroglutamate form. Examination of aligned penicillin acylase and cephalosporin acylase primary sequences, in conjunction with the P. rettgeri and Escherichia coli penicillin acylase crystal structures, suggests several mutations that could potentially allow penicillin acylase to accept charged beta-lactam R-groups and to function as a cephalosporin acylase and thus be used in the manufacture of semi-synthetic cephalosporins.  相似文献   

19.
Triacylglycerol hydrolase mobilizes stored triacylglycerol some of which is used for very-low-density lipoprotein assembly in the liver. A full-length cDNA coding for a human triacylglycerol hydrolase (hTGH) was isolated from a human liver cDNA library. The cDNA has an open reading frame of 576 amino acids with a cleavable 18-amino-acid signal sequence. The deduced amino acid sequence shows that the protein belongs to the carboxylesterase family. The hTGH was highly expressed in Escherichia coli as a 6xHis-tagged fusion protein, with the tag at the N-terminus in place of the signal peptide. However, the expressed protein was insoluble and inactive. Expression was confirmed by immunoblotting and N-terminal amino acid sequencing of the purified protein. Expression of hTGH with its native signal sequence and a C-terminal 6xHis-tag in Sf9 cells using the baculovirus expression system yielded active enzyme. N-terminal amino acid sequencing of the purified expressed protein showed correct processing of the signal peptide. The enzyme also undergoes glycosylation within the endoplasmic reticulum lumen. The results suggest that hTGH expressed in insect cells is properly folded. Therefore, baculovirus expression of hTGH and facile purification of the His-tagged enzyme will allow detailed characterization of the structure/activity relationship.  相似文献   

20.
A dipeptidase was purified from a cell extract of Bifidobacterium longum BORI by ammonium sulfate precipitation and chromatography on DEAE-cellulose and Q-Sepharose columns. The purified dipeptidase had a molecular mass of about 49 kDa and was optimally active at pH 8.0 and 50 degrees C. The enzyme was a strict dipeptidase, being capable of hydrolyzing a range of dipeptides but not tri- and tetrapeptides, p-nitroanilide derivatives of amino acids, or N- or C-terminus-blocked dipeptides. A search of the amino acid sequence of an internal tryptic fragment against protein sequences deduced from the total genome sequence of B. longum NCC2705 revealed that it was identical to an internal sequence of the dipeptidase gene (pepD), which comprised 1,602 nucleotides encoding 533 amino acids with a molecular mass of 60 kDa, and thereby differed considerably from the 49-kDa mass of the purified dipeptidase. To understand this discrepancy, pepD was cloned into an Escherichia coli expression vector (pBAD-TOPO derivative) to generate the recombinant plasmids pBAD-pepD and pBAD-pepD-His (note that His in the plasmid designation stands for a polyhistidine coding region). Both plasmids were successfully expressed in E. coli, and the recombinant protein PepD-His was purified using nickel-chelating affinity chromatography and reconfirmed by internal amino acid sequencing. The PepD sequence was highly homologous to those of the U34 family of peptidases, suggesting that the B. longum BORI dipeptidase is a type of cysteine-type N-terminal nucleophile hydrolase and has a beta-hairpin motif similar to that of penicillin V acylase, which is activated by autoproteolytic processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号