首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conserved Pro43 residue of the uncE protein (subunit c) of the Escherichia coli F1F0-ATPase was changed to Ser or Ala by oligonucleotide-directed mutagenesis, and the mutations were incorporated into the chromosome. The resultant mutant strains were capable of oxidative phosphorylation as indicated by their ability to grow on succinate and had growth yields on glucose that were 80-90% of wild type. Membrane vesicles from the mutants were slightly less efficient than wild type vesicles in ATP-driven proton pumping as indicated by ATP-dependent quenching of quinacrine fluorescence. The decreased quenching response was not due to increased H+ leakiness of the mutant membranes or to loss of F1-ATPase activity from the membrane. These results indicate that the mutant F1F0-ATPases are defective in coupling ATP hydrolysis to H+ translocation. The membrane ATPase activity of the mutants was inhibited less by dicyclohexylcarbodiimide than that of wild type. The decrease in sensitivity to inhibition by dicyclohexylcarbodiimide was caused primarily by dissociation of the F1-ATPase from the mutant F0 in the ATPase assay mixture. These results support the idea that Pro43, and neighboring conserved polar residues play an important role in the binding and functional coupling of F1 to F0. Although a Pro residue is found at position 43 in all species of subunit c studied, surprisingly, it is not absolutely essential to function.  相似文献   

2.
Subunit b of Escherichia coli F1F0 ATP synthase contains a large hydrophilic region thought to be involved in the interaction between F1 and F0. Oligonucleotide-directed mutagenesis was used to evaluate the functional importance of a segment of this region from Glu-77 through Gln-85. The mutagenesis procedure employed a phagemid DNA template and a doped oligonucleotide primer designed to generate a predetermined collection of missense mutations in the target segment. Sixty-one mutant phagemids were identified and shown to contain nucleotide substitutions encoding 37 novel missense mutations. Mutations were isolated singly or in combinations of up to four mutations per recombinant phagemid. F1F0 ATP synthase function was studied by mutant phagemid complementation of a novel E. coli strain in which the uncF (b) gene was deleted. Complementation was assessed by observing growth on solid succinate minimal medium. Many phagemid-encoded uncF (b) gene mutations in the targeted segment resulted in growth phenotypes indistinguishable from those of strains expressing the native b subunit, suggesting abundant F1F0 ATP synthase activity. In contrast, several specific mutations were associated with a loss of enzyme function. Phagemids specifying the Ala-79----Pro, Arg-82----Pro, Arg-83----Pro, or Gln-85----Pro mutation failed to complement uncF (b) gene-deficient E. coli. F1F0 ATP synthase displayed the greatest sensitivity to mutations altering a single site in the target segment, Ala-79. The evidence suggests that Ala-79 occupies a restricted position in the enzyme complex.  相似文献   

3.
The a subunit of F1F0 ATP synthase contains a highly conserved region near its carboxyl terminus which is thought to be important in proton translocation. Cassette site-directed mutagenesis was used to study the roles of four conserved amino acids Gln-252, Phe-256, Leu-259, and Tyr-263. Substitution of basic amino acids at each of these four sites resulted in marked decreases in enzyme function. Cells carrying a subunit mutations Gln-252-->Lys, Phe-256-->Arg, Leu-259-->Arg, and Tyr-263-->Arg all displayed growth characteristics suggesting substantial loss of ATP synthase function. Studies of both ATP-driven proton pumping and proton permeability of stripped membranes indicated that proton translocation through F0 was affected by the mutations. Other mutations, such as the Phe-256-->Asp mutation, also resulted in reduced enzyme activity. However, more conservative amino acid substitutions generated at these same four positions produced minimal losses of F1F0 ATP synthase. The effects of mutations and, hence, the relative importance of the amino acids for enzyme function appeared to decrease with proximity to the carboxyl terminus of the a subunit. The data are most consistent with the hypothesis that the region between Gln-252 and Tyr-263 of the a subunit has an important structural role in F1F0 ATP synthase.  相似文献   

4.
Protein O-mannosylation is an essential protein modification. It is initiated at the endoplasmic reticulum by a family of dolichyl phosphate-mannose:protein O-mannosyltransferases (Pmts), which is evolutionarily conserved from yeast to humans. Saccharomyces cerevisiae Pmt1p is an integral membrane protein of the endoplasmic reticulum. ScPmt1p forms a complex with ScPmt2p that is required for maximum transferase activity. Recently, we proposed a seven-transmembrane structural model for ScPmt1p. A large, hydrophilic, endoplasmic reticulum-oriented segment is flanked by five amino-terminal and two carboxyl-terminal membrane-spanning domains. Based on this model, a structure-function analysis of ScPmt1p was performed. Deletion mutagenesis identified the N-terminal third of the transferase as being essential for the formation of a functional ScPmt1p-ScPmt2p complex. Deletion of the central hydrophilic loop eliminates mannosyltransferase activity, but not ScPmt1p-ScPmt2p interactions. Alignment of all fully characterized PMT family members revealed that this central loop region contains three highly conserved peptide motifs, which can be considered as signatures of the PMT family. In addition, a number of invariant amino acid residues were identified throughout the entire protein sequence. In order to evaluate the functional significance of these conserved residues site-directed mutagenesis was performed. We show that several amino acid substitutions in the conserved motifs significantly reduce ScPmt1p activity. Further, the invariant residues Arg-64, Glu-78, Arg-138, and Leu-408 are essential for ScPmt1p function. In particular, Arg-138 is crucial for ScPmt1p-ScPmt2p complex formation.  相似文献   

5.
Subunit C is a V(1) sector subunit found in all vacuolar H(+)-ATPases (V-ATPases) that may be part of the peripheral stalk connecting the peripheral V(1) sector with the membrane-bound V(0) sector of the enzyme (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804--31810). To elucidate subunit C function, we performed random and site-directed mutagenesis of the yeast VMA5 gene. Site-directed mutations in the most highly conserved region of Vma5p, residues 305--325, decreased catalytic activity of the V-ATPase by up to 48% without affecting assembly. A truncation mutant (K360stop) identified by random mutagenesis suggested a small region near the C terminus of the protein (amino acids 382--388) might be important for subunit stability. Site-directed mutagenesis revealed that three aromatic amino acids in this region (Tyr-382, Phe-385, and Tyr-388) in addition to four other conserved aromatic amino acids (Phe-260, Tyr-262, Phe-296, Phe-300) are essential for stable assembly of V(1) with V(0), although alanine substitutions at these positions support some activity in vivo. Surprisingly, three mutations (F260A, Y262A, and F385A) greatly decrease the stability of the V-ATPase in vitro but increase its k(cat) for ATP hydrolysis and proton transport by at least 3-fold. The peripheral stalk of V-ATPases must balance the stability essential for productive catalysis with the dynamic instability involved in regulation; these three mutations may perturb that balance.  相似文献   

6.
The antigenic determinants of mAbs against subunit c of the Escherichia coli ATP synthase were mapped by ELISA using overlapping synthetic heptapeptides. All epitopes recognized are located in the hydrophilic loop region and are as follows: 31-LGGKFLE-37, 35-FLEGAAR-41, 36-LEGAAR-41 and 36-LEGAARQ-42. Binding studies with membrane vesicles of different orientation revealed that all mAbs bind to everted membrane vesicles independent of the presence or absence of the F1 part. Although the hydrophilic region of subunit c and particularly the highly conserved residues A40, R41, Q42 and P43 are known to interact with subunits gamma and epsilon of the F1 part, the mAb molecules have no effect on the function of F0. Furthermore, it could be demonstrated that the F1 part and the mAb molecule(s) are bound simultaneously to the F0 complex suggesting that not all c subunits are involved in F1 interaction. From the results obtained, it can be concluded that this interaction is fixed, which means that subunits gamma and epsilon do not switch between the c subunits during catalysis and furthermore, a complete rotation of the subunit c oligomer modified with mAb(s) along the stator of the F1F0 complex, proposed to be composed of at least subunits b and delta, seems to be unlikely.  相似文献   

7.
The first cytoplasmic loop of subunit a of the Escherichia coli ATP synthase has been analyzed by cysteine substitution mutagenesis. 13 of the 26 residues tested were found to be accessible to the reaction with 3-(N-maleimidylpropionyl)-biocytin. The other 13 residues predominantly found in the central region of the polypeptide chain between the two transmembrane spans were more resistant to labeling by 3-(N-maleimidylpropionyl)-biocytin while in membrane vesicle preparations. This region of subunit a contains a conserved residue Glu-80, which when mutated to lysine resulted in a significant loss of ATP-driven proton translocation. Other substitutions including glutamine, alanine, and leucine were much less detrimental to function. Cross-linking studies with a photoactive cross-linking reagent were carried out. One mutant, K74C, was found to generate distinct cross-links to subunit b, and the cross-linking had little effect on proton translocation. The results indicate that the first transmembrane span (residues 40-64) of subunit a is probably near one or both of the b subunits and that a less accessible region of the first cytoplasmic loop (residues 75-90) is probably near the cytoplasmic surface, perhaps in contact with b subunits.  相似文献   

8.
We have previously shown that the E31C-substituted epsilon subunit of F1 can be cross-linked by disulfide bond formation to the Q42C-substituted c subunit of F0 in the Escherichia coli F1F0-ATP synthase complex (Zhang, Y., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 24609-24614). The interactions of subunits epsilon and c are thought to be central to the coupling of H+ transport through F0 to ATP synthesis in F1. To further define the domains of interaction, we have introduced additional Cys into subunit epsilon and subunit c and tested for cross-link formation following sulfhydryl oxidation. The results show that Cys, in a continuous stretch of residues 26-33 in subunit epsilon, can be cross-linked to Cys at positions 40, 42, and 44 in the polar loop region of subunit c. The results are interpreted, and the subunit interaction is modeled using the NMR and x-ray diffraction structures of the monomeric subunits together with information on the packing arrangement of subunit c in a ring of 12 subunits. In the model, residues 26-33 form a turn of antiparallel beta-sheet which packs between the polar loop regions of adjacent subunit c at the cytoplasmic surface of the c12 oligomer.  相似文献   

9.
Lu M  Stoller MO  Wang S  Liu J  Fagan MB  Nunberg JH 《Journal of virology》2001,75(22):11146-11156
Membrane fusion by human immunodeficiency virus type 1 (HIV-1) is promoted by the refolding of the viral envelope glycoprotein into a fusion-active conformation. The structure of the gp41 ectodomain core in its fusion-active state is a trimer of hairpins in which three antiparallel carboxyl-terminal helices pack into hydrophobic grooves on the surface of an amino-terminal trimeric coiled coil. In an effort to identify amino acid residues in these grooves that are critical for gp41 activation, we have used alanine-scanning mutagenesis to investigate the importance of individual side chains in determining the biophysical properties of the gp41 core and the membrane fusion activity of the gp120-gp41 complex. Alanine substitutions at Leu-556, Leu-565, Val-570, Gly-572, and Arg-579 positions severely impaired membrane fusion activity in envelope glycoproteins that were for the most part normally expressed. Whereas alanine mutations at Leu-565 and Val-570 destabilized the trimer-of-hairpins structure, mutations at Gly-572 and Arg-579 led to the formation of a stable gp41 core. Our results suggest that the Leu-565 and Val-570 residues are important determinants of conserved packing interactions between the amino- and carboxyl-terminal helices of gp41. We propose that the high degree of sequence conservation at Gly-572 and Arg-579 may result from selective pressures imposed by prefusogenic conformations of the HIV-1 envelope glycoprotein. Further analysis of the gp41 activation process may elucidate targets for antiviral intervention.  相似文献   

10.
We have tested the role of the polar loop of subunit c of the Escherichia coli ATP synthase in stabilizing the hairpin structure of this protein. The structure of the c(32-52) peptide corresponding to the cytoplasmic region of subunit c bound to the dodecylphosphocholine micelles was solved by high-resolution NMR. The region comprising residues 41-47 forms a well-ordered structure rather similar to the conformation of the polar loop region in the solution structure of the full-length subunit c and is flanked by short alpha-helical segments. This result suggests that the rigidity of the polar loop significantly contributes to the stability of the hairpin formed by the two helices of subunit c. This experimental system may be useful for NMR studies of interactions between subunit c and subunits gamma and epsilon, which together form the rotor of the ATP synthase.  相似文献   

11.
Motor proteins, myosin, and kinesin have gamma-phosphate sensors in the switch II loop that play key roles in conformational changes that support motility. Here we report that a rotary motor, F1-ATPase, also changes its conformations upon phosphate release. The tryptophan mutation was introduced into Arg-333 in the beta subunit of F1-ATPase from thermophilic Bacillus PS3 as a probe of conformational changes. This residue interacts with the switch II loop (residues 308-315) of the beta subunit in a nucleotide-bound conformation. The addition of ATP to the mutant F1 subcomplex alpha3beta(R333W)3gamma caused transient increase and subsequent decay of the Trp fluorescence. The increase was caused by conformational changes on ATP binding. The rate of decay agreed well with that of phosphate release monitored by phosphate-binding protein assays. This is the first evidence that the beta subunit changes its conformation upon phosphate release, which may share a common mechanism of exerting motility with other motor proteins.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymes from different species differ with respect to carboxylation catalytic efficiency and CO2/O2 specificity, but the structural basis for these differences is not known. Whereas much is known about the chloroplast-encoded large subunit, which contains the alpha/beta-barrel active site, much less is known about the role of the nuclear-encoded small subunit in Rubisco structure and function. In particular, a loop between beta-strands A and B contains 21 or more residues in plants and green algae, but only 10 residues in prokaryotes and nongreen algae. To determine the significance of these additional residues, a mutant of the green alga Chlamydomonas reinhardtii, which lacks both small-subunit genes, was used as a host for transformation with directed-mutant genes. Although previous studies had indicated that the betaA-betaB loop was essential for holoenzyme assembly, Ala substitutions at residues conserved among land plants and algae (Arg-59, Tyr-67, Tyr-68, Asp-69, and Arg-71) failed to block assembly or eliminate function. Only the Arg-71 --> Ala substitution causes a substantial decrease in holoenzyme thermal stability. Tyr-68 --> Ala and Asp-69 --> Ala enzymes have lower K(m)(CO2) values, but these improvements are offset by decreases in carboxylation V(max) values. The Arg-71 --> Ala enzyme has a decreased carboxylation V(max) and increased K(m)(CO2) and K(m)(O2) values, which account for an observed 8% decrease in CO2/O2 specificity. Despite the fact that Arg-71 is more than 20 A from the large-subunit active site, it is apparent that the small-subunit betaA-betaB loop region can influence catalytic efficiency and CO2/O2 specificity.  相似文献   

13.
In Escherichia coli, a parallel homodimer of identical b subunits constitutes the peripheral stalk of F(1)F(0) ATP synthase. Although the two b subunits have long been viewed as a single functional unit, the asymmetric nature of the enzyme complex suggested that the functional roles of each b subunit should not necessarily be considered equivalent. Previous mutagenesis studies of the peripheral stalk suffered from the fact that mutations in the uncF(b) gene affected both of the b subunits. We developed a system to express and study F(1)F(0) ATP synthase complexes containing two different b subunits. Two mutations already known to inactivate the F(1)F(0) ATP synthase complex have been studied using this experimental system. An evolutionarily conserved arginine, b(Arg-36), was known to be crucial for F(1)F(0) ATP synthase function, and the last four C-terminal amino acids had been shown to be important for enzyme assembly. Experiments expressing one of the mutants with a wild type b subunit demonstrated the presence of heterodimers in F(1)F(0) ATP synthase complexes. Activity assays suggested that the heterodimeric F(1)F(0) complexes were functional. When the two defective b subunits were expressed together and in the absence of any wild type b subunit, an active F(1)F(0) ATP synthase complex was assembled. This mutual complementation between fully defective b subunits indicated that each of the two b subunits makes a unique contribution to the functions of the peripheral stalk, such that one mutant b subunit is making up for what the other is lacking.  相似文献   

14.
In order to elucidate the mechanism of interaction between human epidermal growth factor (EGF) and its receptor, selected variants of EGF, differing by single amino acid substitutions, have been made by site-directed mutagenesis. The receptor affinity of these mutants was determined by a receptor binding competition assay, and the effects of the substitution on the structure of the protein were assessed by 1H nuclear magnetic resonance techniques. Various substitutions of Arg-41 resulted in substantial reduction in receptor affinity of EGF whereas change of Tyr-13 did not affect binding to the receptor. The 1H resonances of all nonexchangeable protons of the Tyr-13----Leu, Arg-41----His, and Leu-47----Glu variants were assigned and compared in order to assess the structural integrity of these mutants, which possess very different spectral and biological properties. In the case of the Leu-47----Glu mutant, only minor localized spectral changes were observed, confirming that the tertiary structure of the protein is preserved upon mutation. In contrast, for both the Arg-41----His and Tyr-13----Leu variants, significant and strikingly similar spectra changes were observed for many residues located far away from the mutated residues. This implies that similar structural alterations have taken place in both proteins, an idea further supported by hydrogen-exchange experiments where the exchange rates of hydrogen-bonded amide protons for both the Tyr-13----Leu and the Arg-41----His mutants were found to be about 4 times faster than in the wild-type protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

16.
In an attempt to identify amino acid residues involved in proton translocation by the Fo sector of the Escherichia coli F1Fo-ATPase, 16 mutations at the carboxyl-terminal third of the a subunit have been isolated, and their phenotypes have been partially characterized. Thirteen mutations were constructed by "cassette" mutagenesis at two highly conserved residues, aglu196 and apro190. Two mutations were products of oligonucleotide-directed mutagenesis of a portion of of oligonucleotide-directed mutagenesis of a portion of the uncB gene cloned into an M13 vector. One mutation was isolated after in vitro mutagenesis of the entire uncB gene in a plasmid vector with hydroxylamine. Amino acid substitutions for aglu196 (Asp, Gln, His, Asn, Lys, Ala, Ser, Pro) affect ATP-driven proton translocation and passive proton permeability by Fo to varying extents, but do not prevent growth on minimal succinate media. Amino acid substitutions of glutamine or arginine for apro190 affect F1Fo-ATPase assembly and eliminate ATP-driven proton translocation, while the substitution of asparagine at this position does not significantly affect either assembly or proton translocation. The substitution of amino acids threonine or alanine for aser199 causes no detectable phenotypic change from wild type. These and other mutations are discussed in terms of the assembly, structure, and function of the a subunit. It is concluded that aglu196 and apro190 are not obligate components of the proton channel, but that they affect proton translocation indirectly.  相似文献   

17.
Two monoclonal antibodies, beta 208 and beta 210, against the beta subunit of the F(1) ATPase from Escherichia coli reacted with an intact beta subunit and also a peptide corresponding to a portion of beta between residues 1 and 145. Mutations at Ala-1, Val-15, Glu-16, Phe-17, Leu-29, Gly-65, or Leu-66, and His-110 or Arg-111 for beta 210 and beta 208, respectively, caused decreased antibody binding to beta, suggesting that these residues form the epitopes and are thought to lie close together on the surface of the beta subunit. The topological locations of the corresponding residues in the atomic structure of the bovine beta subunit agree well with these expectations, except for Ala-1 and Leu-29. beta 210 binds to two beta strands including the epitope residues that are 50 residues apart, indicating that this antibody recognizes the tertiary structure of the N-terminal end region. Mutations in the epitope residues of beta 210 do not affect the F(1) ATPase activity, suggesting that surfaces of the two beta strands in the amino-terminal end region are not functionally essential. To analyze the functional importance around His-110 recognized by beta 208 we introduced site specific mutations at residues His-110 and Ile-109. Ile-109 to Ala or Arg, and His-110 to Ala or Asp caused defective assembly of F(1). However, the His-110 to Arg mutation had no effect on molecular assembly, suggesting that Ile-109 and His-110, especially the positive charge of His-110 are essential for the assembly of F(1). The His-110 to Arg mutation caused a large decrease in F(1)-ATPase activity, suggesting that a subtle change in the topological arrangement of the positive charge of His-110 located on the surface of beta plays an important role in the catalytic mechanism of the F(1)-ATPase.  相似文献   

18.
Three missense mutants in subunit a of the Escherichia coli F1F0-ATPase were isolated and characterized after hydroxylamine mutagenesis of a plasmid carrying the uncB (subunit a) gene. The mutations resulted in Asp119----His, Ser152----Phe, or Gly197----Arg substitutions in subunit a. Function was not completely abolished by any of the mutations. The F0 membrane sector was assembled in all three cases as judged by restoration of dicyclohexylcarbodiimide sensitivity to the F1F0-ATPase. The H+ translocation capacity of F0 was reduced in all three mutants. ATP-driven H+-translocation was also reduced, with the response in the Gly197----Arg mutant being almost nil and that in the Asp119----His and Ser152----Phe mutants less severely affected. The substituted residues are predicted to lie in the second, third, and fourth transmembrane helices suggested in most models for subunit a. The Gly197----Arg mutation lies in a very conserved region of the protein and the substitution may disrupt a structure that is critical to function. The Asp119----His and Ser152----Phe mutations also lie in areas with sequence conservation. A further analysis of randomly generated mutants may provide more information on regions of the protein that are crucial to function. Heterodiploid transformants, carrying plasmids with either the wild-type uncB gene or mutant uncB genes in an uncB (Trp231----stop) background, were characterized biochemically. The truncated subunit a was not detected in membranes of the background strain by Western blotting, and the uncB+ plasmid complemented strain showed normal biochemistry. The uncB mutant genes were shown to cause equivalent defects in either the heterodiploid background configuration, or after incorporation into an otherwise wild-type unc operon. The subunit a (Trp231----stop) background strain was shown to bind F1-ATPase nearly normally despite lacking subunit a in its membrane.  相似文献   

19.
Site-directed mutagenesis was employed to examine the function of two highly conserved residues, Tyr-37 and Arg-41, of human EGF (hEGF) in receptor binding. Both a conservative change to phenylalanine and a semi-conservative change to histidine at position 37 yield proteins with receptor affinity similar to wild-type hEGF. A non-conservative change to alanine results in a molecule with about 40% of the receptor affinity, indicating that an aromatic residue is not essential at this position. Both conservative (to lysine) and non-conservative (to alanine) substitutions at position 41 drastically reduced receptor binding to less than 0.5% of the wild-type activity. 1D-NMR data indicate that the replacement of Arg-41 by lysine does not significantly alter the native protein conformation. Thus, Arg-41 may be directly involved in ligand receptor interaction, whereas the side chain of Tyr-37, although possibly important structurally, is not essential for receptor binding.  相似文献   

20.
Interactions between subunit a and the c subunits of the Escherichia coli ATP synthase are thought to control proton translocation through the F(o) sector. In this study cysteine substitution mutagenesis was used to define the cytoplasmic ends of the first three transmembrane spans of subunit a, as judged by accessibility to 3-N-maleimidyl-propionyl biocytin. The cytoplasmic end of the fourth transmembrane span could not be defined in this way because of the limited extent of labeling of all residues between 186 and 206. In contrast, most of the preceding residues in that region, closer to transmembrane span 3, were labeled readily. The proximity of this region to other subunits in F(o) was tested by reacting mono-cysteine mutants with a photoactivated cross-linker. Residues 165, 169, 173, 174, 177, 178, and 182-184 could all be cross-linked to subunit c, but no sites were cross-linked to b subunits. Attempts using double mutants of subunit a to generate simultaneous cross-links to two different c subunits were unsuccessful. These results indicate that the cytoplasmic loop between transmembrane spans 3 and 4 of subunit a is in close proximity to at least one c subunit. It is likely that the more highly conserved, carboxyl-terminal region of this loop has limited surface accessibility due to protein-protein interactions. A model is presented for the interaction of subunit a with subunit c, and its implications for the mechanism of proton translocation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号