首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

2.
Repetitive DNA is present in the eukaryotic genome in the form of segmental duplications, tandem and interspersed repeats, and satellites. Repetitive sequences can be beneficial by serving specific cellular functions (e.g. centromeric and telomeric DNA) and by providing a rapid means for adaptive evolution. However, such elements are also substrates for deleterious chromosomal rearrangements that affect fitness and promote human disease. Recent studies analyzing the role of nuclear organization in DNA repair and factors that suppress non-allelic homologous recombination (NAHR) have provided insights into how genome stability is maintained in eukaryotes. In this review, we outline the types of repetitive sequences seen in eukaryotic genomes and how recombination mechanisms are regulated at the DNA sequence, cell organization, chromatin structure, and cell cycle control levels to prevent chromosomal rearrangements involving these sequences.  相似文献   

3.
J F Theis  C Yang  C B Schaefer  C S Newlon 《Genetics》1999,152(3):943-952
ARS elements of Saccharomyces cerevisiae are the cis-acting sequences required for the initiation of chromosomal DNA replication. Comparisons of the DNA sequences of unrelated ARS elements from different regions of the genome have revealed no significant DNA sequence conservation. We have compared the sequences of seven pairs of homologous ARS elements from two Saccharomyces species, S. cerevisiae and S. carlsbergensis. In all but one case, the ARS308-ARS308(carl) pair, significant blocks of homology were detected. In the cases of ARS305, ARS307, and ARS309, previously identified functional elements were found to be conserved in their S. carlsbergensis homologs. Mutation of the conserved sequences in the S. carlsbergensis ARS elements revealed that the homologous sequences are required for function. These observations suggested that the sequences important for ARS function would be conserved in other ARS elements. Sequence comparisons aided in the identification of the essential matches to the ARS consensus sequence (ACS) of ARS304, ARS306, and ARS310(carl), though not of ARS310.  相似文献   

4.
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication.  相似文献   

5.
We have determined functional elements required for autonomous replication of the Schizosaccharomyces pombe ars2004 that acts as an intrinsic chromosomal replication origin. Internal deletion analysis of a 940-bp fragment (ars2004M) showed three regions, I to III, to be required for autonomously replicating sequence (ARS) activity. Eight-base-pair substitutions in the 40-bp region I, composed of arrays of adenines on a DNA strand, resulted in a great reduction of ARS activity. Substitutions of region I with synthetic sequences showed that no specific sequence but rather repeats of three or more consecutive adenines or thymines, without interruption by guanine or cytosine, are required for the ARS activity. The 65-bp region III contains 11 repeats of the AAAAT sequence, while the 165-bp region II has short adenine or thymine stretches and a guanine- and cytosine-rich region which enhances ARS activity. All three regions in ars2004M can be replaced with 40-bp poly(dA/dT) fragments without reduction of ARS activity. Although spacer regions in the ars2004M enhance ARS activity, all could be deleted when an 40-bp poly(dA/dT) fragment was added in place of region I. Our results suggest that the origin activity of fission yeast replicators depends on the number of adenine/thymine stretches, the extent of their clustering, and presence of certain replication-enhancing elements.  相似文献   

6.
Several complementary procedures were used to identify and characterize DNA sequences which are repeated within a 44 kilobase (kb) segment of rabbit chromosomal DNA containing four different rabbit β-like globin genes (β1–β4). Cross-hybridization between cloned DNAs from different regions of the gene cluster indicates the presence of a complex array of repeat sequences interspersed with the globin genes. We classified 20 different repeat sequences into five families whose members cross-hybridize. Electron microscopy was used to determine the location, size and relative orientations of many of the repeat sequences. Both direct and inverted repeats were identified, with sizes ranging from 140 to 1400 base pairs (bp). Each of the four closely linked globin genes is flanked by at least one pair of inverted repeats of 140–400 bp, and the entire set of four genes is flanked by an inverted repeat of 1400 bp. Two of the five repeat families contain repeat sequences of different sizes. We found that the smaller sequence elements can occur individually or in association with the larger repeat sequences, suggesting that the larger repeats may be composed of more than one smaller repeat sequence. The restriction fragments containing the intracluster repeats also contain sequences which are repeated many times in total rabbit genomic DNA, but it is not known whether the genomic and intracluster repeats are the same sequences. The results provide the first demonstration of the relationship between single-copy and repetitive DNA sequences in a large segment of chromosomal DNA containing a well characterized set of developmentally regulated genes.  相似文献   

7.
The sequences of a 51-kb region containing the cluster of five rat gamma-crystallin-coding genes (CRYG) and of a 7-kb region surrounding the sixth rat CRYG gene were determined. Approximately 78% of the total sequence represents intergenic DNA. We also sequenced 22 kb of DNA from the human CRYG gene cluster. All CRYG genes are associated with CpG-rich regions. The sequence similarity between the human and rat gene regions drops sharply (to 65%) in intronic and 3'-flanking regions but decreases only gradually in the 5'-flanking region. Highly conserved regions (greater than 80%) are found as far upstream as 1.5 kb. Overall intergenic distances are conserved. The human region contains much more repetitive DNA (24% vs. 10%) but less simple-sequence (sps) DNA (0.7% vs. 4%) than the rat region. Almost all repeats and spsDNA elements are located in the intergenic region. The location of repetitive and spsDNA differs between the orthologous regions and these elements were probably inserted after the evolutionary separation of rat and man. The Alu repeats in man and the B3 repeats in the rat are close copies of their respective consensus sequences and bordered by virtually perfect repeats. In contrast, the B1 and B2 repeats in the rat have diverged considerably from the consensus sequence and the surrounding direct repeats are usually imperfect. Thus the dispersion of the B1 and B2 repeats in the rat probably preceded that of the B3 repeats. Within the rat genomic region the spacing of Z-DNA elements is surprisingly regular, they are located about 12 kb apart. A search for putative matrix-associated regions suggests that the rat CRYG gene cluster is organized into two chromosomal domains.  相似文献   

8.
In Saccharomyces cerevisiae chromosomal DNA replication initiates at intervals of approximately 40 kb and depends upon the activity of autonomously replicating sequence (ARS) elements. The identification of ARS elements and analysis of their function as chromosomal replication origins requires the use of functional assays because they are not sufficiently similar to identify by DNA sequence analysis. To complete the systematic identification of ARS elements on S. cerevisiae chromosome III, overlapping clones covering 140 kb of the right arm were tested for their ability to promote extrachromosomal maintenance of plasmids. Examination of chromosomal replication intermediates of each of the seven ARS elements identified revealed that their efficiencies of use as chromosomal replication origins varied widely, with four ARS elements active in < or = 10% of cells in the population and two ARS elements active in > or = 90% of the population. Together with our previous analysis of a 200-kb region of chromosome III, these data provide the first complete analysis of ARS elements and DNA replication origins on an entire eukaryotic chromosome.  相似文献   

9.
Complete DNA sequence of yeast chromosome II.   总被引:20,自引:2,他引:18       下载免费PDF全文
In the framework of the EU genome-sequencing programmes, the complete DNA sequence of the yeast Saccharomyces cerevisiae chromosome II (807 188 bp) has been determined. At present, this is the largest eukaryotic chromosome entirely sequenced. A total of 410 open reading frames (ORFs) were identified, covering 72% of the sequence. Similarity searches revealed that 124 ORFs (30%) correspond to genes of known function, 51 ORFs (12.5%) appear to be homologues of genes whose functions are known, 52 others (12.5%) have homologues the functions of which are not well defined and another 33 of the novel putative genes (8%) exhibit a degree of similarity which is insufficient to confidently assign function. Of the genes on chromosome II, 37-45% are thus of unpredicted function. Among the novel putative genes, we found several that are related to genes that perform differentiated functions in multicellular organisms of are involved in malignancy. In addition to a compact arrangement of potential protein coding sequences, the analysis of this chromosome confirmed general chromosome patterns but also revealed particular novel features of chromosomal organization. Alternating regional variations in average base composition correlate with variations in local gene density along chromosome II, as observed in chromosomes XI and III. We propose that functional ARS elements are preferably located in the AT-rich regions that have a spacing of approximately 110 kb. Similarly, the 13 tRNA genes and the three Ty elements of chromosome II are found in AT-rich regions. In chromosome II, the distribution of coding sequences between the two strands is biased, with a ratio of 1.3:1. An interesting aspect regarding the evolution of the eukaryotic genome is the finding that chromosome II has a high degree of internal genetic redundancy, amounting to 16% of the coding capacity.  相似文献   

10.
Six DNA fragments of interphase chromosomes isolated from nuclear envelopes of murine hepatocytes were cloned and sequenced. Analysis of their structural-functional organization suggests that these fragments are highly specified protein-nonencoding fractions of a eukaryotic genome. In the evolutionary process, they appear already in archaebacteria and may be "ancestral" for DNA sequences involved in structuring chromosomal domains (rosette-like structures) of tissue-specific genes. In their composition, these fragments have nucleotide sequences homologous to the repeats of the SINE and LINE families and to the satellite DNA of murine centromeres.  相似文献   

11.
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.  相似文献   

12.
Several autonomously replicating sequences of Hansenula polymorpha DL-1 (HARSs) with the characteristics of tandem integration were cloned by an enrichment procedure and analyzed for their functional elements to elucidate the mechanism of multiple integration in tandem repeats. All plasmids harboring newly cloned HARSs showed a high frequency of transformation and were maintained episomally before stabilization. After stabilization, the transforming DNA was stably integrated into the chromosome. HARS36 was selected for its high efficiency of transformation and tendency for integration. Several tandemly repeated copies of the transforming plasmid containing HARS36 (pCE36) integrated into the vicinity of the chromosomal end. Bal 31 digestion of the total DNA from the integrants followed by Southern blotting generated progressive shortening of the hybridization signal, indicating the telomeric localization of the transforming plasmids on the chromosome. The minimum region of HARS36 required for its HARS activity was analyzed by deletion analyses. Three important regions, A, B, and C, for episomal replication and integration were detected. Analysis of the DNA sequences of regions A and B required for the episomal replication revealed that region A contained several AT-rich sequences that showed sequence homology with the ARS core consensus sequence of Saccharomyces cerevisiae. Region B contained two directly repeated sequences which were predicted to form a bent DNA structure. Deletion of the AT-rich core in region A resulted in a complete loss of ARS activity, and deletion of the repeated sequences in region B greatly reduced the stability of the transforming plasmid and resulted in retarded cell growth. Region C was required for the facilitated chromosomal integration of transforming plasmids.  相似文献   

13.
Nuclei isolated from eukaryotic cells can be depleted of histones and most soluble nuclear proteins to isolate a structural framework called the nuclear scaffold. This structure maintains specific interactions with genomic DNA at sites known as scaffold attached regions (SARs), which are thought to be the bases of DNA loops. In both Saccharomyces cerevisiae and Schizosaccharomyces pombe, genomic ARS elements are recovered as SARs. In addition, SARs from Drosophila melanogaster bind to yeast nuclear scaffolds in vitro and a subclass of these promotes autonomous replication of plasmids in yeast. In the present report, we present fine mapping studies of the Drosophila ftz SAR, which has both SAR and ARS activities in yeast. The data establish a close relationship between the sequences involved in ARS activity and scaffold binding: ARS elements that can bind the nuclear scaffold in vitro promote more efficient plasmid replication in vivo, but scaffold association is not a strict prerequisite for ARS function. Efficient interaction with nuclear scaffolds from both yeast and Drosophila requires a minimal length of SAR DNA that contains reiteration of a narrow minor groove structure of the double helix.  相似文献   

14.
15.
Summary Three distinct chloroplast (cp) DNA fragments from Petunia hybrida, which promote autonomous replication in yeast, were mapped on the chloroplast genome. Sequence analysis revealed that these fragments (called ARS A, B and C) have a high AT content, numerous short direct and inverted repeats and at least one yeast ARS consensus sequence 5A/TTTTATPuTTTA/T, essential for yeast ARS activity. ARS A and B also showed the presence of (semi-)conserved sequences, present in all Chlamydomanas reinhardii cpDNA regions that promote autonomous replication in yeast (ARS sequences) or in C. reinhardii (ARC sequences). A 431 bp BamHI/EcoRI fragment, close to one of the inverted repeats and adjacent to the ARS B subfragment contains an AT-rich stretch of about 100 nucleotides that show extensive homology with an Euglena gracilis cpDNA fragment which is part of the replication origin region. This conserved region contains direct and inverted repeats, stem-and-loop structures can be folded and it contains an ARS consensus sequence. In the near vicinity a GC-rich block is present. All these features make this cpDNA region the best candidate for being the origin of replication of P. hybrida cpDNA.  相似文献   

16.
The histidine tRNA genes of yeast   总被引:9,自引:0,他引:9  
Yeast has at least seven nuclear histidine tRNA genes although there is a single tRNAHis. We have sequenced three of the histidine tRNA genes. The genes have identical coding sequences and the DNA anti-codon sequence GTG corresponds to the GUG anti-codon in tRNAHis. None of the three yeast histidine tRNA genes has an intervening sequence. Two of the three genes contain repeated DNA elements in the region adjacent to the 5' end of the histidine tRNA gene. One of the elements, sigma, is 18 base pairs (bp) from the 5' end of each of these genes, sigma elements are highly conserved and flanked by 5-bp repeats. The other element, delta, is at variable distances from the tRNA gene; one is 439 bp from a histidine tRNA gene and the other is 52 bp from a histidine tRNA gene. These solo delta elements are quite divergent when compared with delta s associated with transposon yeast elements and are not flanked by 5-bp repeats.  相似文献   

17.
E Biet  J Sun    M Dutreix 《Nucleic acids research》1999,27(2):596-600
Repetitive sequences have been proposed to be recombinogenic elements in eukaryotic chromosomes. We tested whether dinucleotide repeats sequences are preferential sites for recombination because of their high affinity for recombination enzymes. We compared the kinetics of the binding of the scRad51, hsRad51 and ecRecA proteins to oligonucleotides with repeats of dinucleotides GT, CA, CT, GA, GC or AT. Since secondary structures in single-stranded DNA (ssDNA) act as a barrier to complete binding we measured whether these oligonucleotides are able to form stable secondary structures. We show that the preferential binding of recombination proteins is conserved among the three proteins and is influenced mainly by secondary structures in ssDNA.  相似文献   

18.
Circular DNA elements are involved in genome plasticity, particularly of tandem repeats. However, amplifications of DNA segments in Saccharomyces cerevisiae reported so far involve pre-existing repetitive sequences such as ribosomal DNA, Ty elements and Long Terminal Repeats (LTRs). Here, we report the generation of an eccDNA, (extrachromosomal circular DNA element) in a region without any repetitive sequences during an adaptive evolution experiment. We performed whole genome sequence comparison between an efficient D-xylose fermenting yeast strain developed by metabolic and evolutionary engineering, and its parent industrial strain. We found that the heterologous gene XylA that had been inserted close to an ARS sequence in the parent strain has been amplified about 9 fold in both alleles of the chromosomal locus of the evolved strain compared to its parent. Analysis of the amplification process during the adaptive evolution revealed formation of a XylA-carrying eccDNA, pXI2-6, followed by chromosomal integration in tandem arrays over the course of the evolutionary adaptation. Formation of the eccDNA occurred in the absence of any repetitive DNA elements, probably using a micro-homology sequence of 8 nucleotides flanking the amplified sequence. We isolated the pXI2-6 eccDNA from an intermediate strain of the evolutionary adaptation process, sequenced it completely and showed that it confers high xylose fermentation capacity when it is transferred to a new strain. In this way, we have provided clear evidence that gene amplification can occur through generation of eccDNA without the presence of flanking repetitive sequences and can serve as a rapid means of adaptation to selection pressure.  相似文献   

19.
To study possible involvement of polypurine and polypyrimidine DNA tracts capable of forming triple-stranded structures (the H-form of DNA) in compaction of eukaryotic chromosomes, an in silico search for complementary polypurine and polypyrimidine sequences was carried out within 12 eukaryotic genes. It was shown that, in chromosomal gene loci, 10–11 bp polypurine and polypyrimidine tracts potentially capable of interacting with each other with the formation of triplex structures (“structuring” regions) are located in predominantly in introns and gene-flanking regions. In vivo, such DNA-DNA interactions can result in the chromosomal gene domain folding into several small loops. The character of the DNA triplex-mediated compaction of chromosomal gene loci may be related to gene functioning. A similar analysis of long (LINE) and short (SINE) interspersed repeat sequences, as well as of satellite DNA, showed essential resemblance between the compaction mechanisms of coding and noncoding chromosome regions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号