首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enzymology of the heterodimeric (NiFe) and (NiFeSe) hydrogenases, the monomeric nickel-containing hydrogenases plus the multimeric F420-(NiFe) and NAD(+)-(NiFe) hydrogenases are summarized and discussed in terms of subunit localization of the redox-active nickel and non-heme iron clusters. It is proposed that nickel is ligated solely by amino acid residues of the large subunit and that the non-heme iron clusters are ligated by other cysteine-rich polypeptides encoded in the hydrogenase operons which are not necessarily homologous in either structure or function. Comparison of the hydrogenase operons or putative operons and their hydrogenase genes indicate that the arrangement, number and types of genes in these operons are not conserved among the various types of hydrogenases except for the gene encoding the large subunit. Thus, the presence of the gene for the large subunit is the sole feature common to all known nickel-containing hydrogenases and unites these hydrogenases into a large but diverse gene family. Although the different genes for the large subunits may possess only nominal general derived amino acid homology, all large subunit genes sequenced to date have the sequence R-X-C-X-X-C fully conserved in the amino terminal region of the polypeptide chain and the sequence of D-P-C-X-X-C fully conserved in the carboxyl terminal region. It is proposed that these conserved motifs of amino acids provide the ligands required for the binding of the redox-active nickel. The existing EXAFS (Extended X-ray Absorption Fine Structure) information is summarized and discussed in terms of the numbers and types of ligands to the nickel and the various redox species of nickel defined by EPR spectroscopy. New information concerning the ligands to nickel is presented based on site-directed mutagenesis of the gene encoding the large subunit of the (NiFe) hydrogenase-1 of Escherichia coli. Based on considerations of the biochemical, molecular and biophysical information, ligand environments of the nickel in different redox states of the (NiFe) hydrogenase are proposed.  相似文献   

2.
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed.  相似文献   

4.
The cytoplasmic, NAD-linked hydrogenase of the Gram-positive hydrogen-oxidizing bacterium Nocardia opaca 1b was compared with the analogous enzyme isolated from the Gram-negative bacterium Alcaligenes eutrophus H16. The hydrogenase of N. opaca 1b was purified by a new procedure applying chromatography on phenyl-Sepharose and DEAE-Sephacel with two columns in series. A homogeneous enzyme preparation with a specific activity of 74 mumol H2 oxidized.min-1.mg protein-1 and a yield of 32% was isolated. The A. eutrophus enzyme was purified as previously published. Both enzymes are tetrameric proteins composed of four non-identical subunits (alpha, beta, gamma, delta). The four subunits of both of these enzymes were separated and isolated as single polypeptides by preparative polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Immunological comparison of the four subunits of the Nocardia hydrogenase with those of the Alcaligenes enzyme showed that the alpha, beta, gamma, and delta subunits of one organism were serologically related to the analogous subunits of the other organism. Among themselves, the four subunits do not have any serological relationship. The eight individual polypeptides were also compared with respect to the NH2-terminal amino acid sequences determined by automated Edman degradation and to the amino acid compositions. Strong sequence similarities exist between the analogous subunits isolated from the two bacteria. Within the established N-terminal sequences the similarities between both alpha, beta, gamma and delta subunits amount to 63%, 79%, 80% and 65%, respectively. No similarities exist between the different, non-analogous subunits alpha, beta, gamma and delta.  相似文献   

5.
Summary The nucleotide sequences of the chloroplast genes for the alpha, beta and epsilon subunits of wheat chloroplast ATP synthase have been determined. Open reading frames of 1512 bp, 1494 bp and 411 bp are deduced to code for polypeptides of molecular weights 55201, 53796 and 15200, identified as the alpha, beta and epsilon subunits respectively by homology with the subunits from other sources and by amino acid sequencing of the epsilon subunit. The genes for the beta and epsilon subunits overlap by 4 bp. The gene for methionine tRNA is located 118 bp downstream from the epsilon subunit gene. Comparisons of the deduced amino acid sequences of the alpha and beta subunits with those from other species suggest regions of the proteins involved in adenine nucleotide binding.  相似文献   

6.
An iron-only hydrogenase was partially purified and characterized from Desulfovibrio fructosovorans wild-type strain. The enzyme exhibits a molecular mass of 56 kDa and is composed of two distinct subunits HydA and HydB (46 and 13 kDa, respectively). The N-terminal amino acid sequences of the two subunits of the enzyme were determined with the aim of designing degenerate oligonucleotides. Direct and inverse polymerase chain reaction techniques were used to clone the hydrogenase encoding genes. A 9-nucleotide region located 75 bp upstream from the translational start codon of the D. fructosovorans hydA gene was found to be highly conserved. The analysis of the deduced amino acid sequence of these genes showed the presence of a signal sequence located in the small subunit, exhibiting the consensus sequence which is likely to be involved in the specific export mechanism of hydrogenases. Two ferredoxin-like motives involved in the coordination of [4Fe-4S] clusters were identified in the N-terminal domain of the large subunit. The amino acid sequence of the [Fe] hydrogenase from D. fructosovorans was compared with the amino acid sequences from eight other hydrogenases (cytoplasmic and periplasmic). These enzymes share an overall 18% identity and 28% similarity. The identity reached 73% and 69% when the D. fructosovorans hydrogenase sequence was compared with the hydrogenase sequences from Desulfovibrio vulgaris Hildenborough and Desulfovibrio vulgaris oxamicus Monticello, respectively.  相似文献   

7.
8.
Polyacrylamide gel electrophoresis of purified rabbit skeletal muscle L-type calcium channel before and after reduction of disulfide bonds confirmed that 27- and 24-kDa forms of the delta subunit are disulfide-linked to the 143-kDa alpha 2 subunit. The amino acid sequences of three peptides obtained by tryptic digestion of the delta subunits corresponded to amino acid sequences predicted from the 3' region of the mRNA encoding alpha 2. One of these peptides had the same sequence as the N terminus of the 24- and 27-kDa forms of the delta subunit and corresponded to residues 935-946 of the predicted alpha 2 primary sequence. Anti-peptide antibodies directed to regions on the N-terminal side of this site recognized the 143-kDa alpha 2 subunit in immunoblots of purified calcium channels under reducing conditions, whereas an antipeptide antibody directed toward a sequence on the C-terminal side of this site recognized 24- and 27-kDa forms of the delta subunit. A similar result was obtained after immunoblotting using purified transverse tubules or crude microsomal membrane preparations indicating that alpha 2 and delta occur as distinct disulfide-linked polypeptides in skeletal muscle membranes. Thus, the delta subunits are encoded by the same gene as the alpha 2 subunit and are integral components of the skeletal muscle calcium channel.  相似文献   

9.
Two methyl viologen hydrogenase (MVH) enzymes from Methanobacterium thermoautotrophicum delta H have been separated (resolution, Rs at 1.0) on a Mono Q column after chromatography on DEAE-Sephacel and Superose 6 Prep Grade. The newly discovered MVH (MVH II) was eluted at 0.5 M NaCl with a linear gradient of 0.45 to 0.65 M NaCl (100 ml). The previously described MVH (MVH I) eluted in a NaCl gradient at 0.56 M. The specific activities of MVH I and MVH II were 184.8 and 61.3 U/mg of protein, respectively, when enzyme activity was compared at pH 7.5, the optimal pH for MVH II. Gel electrophoresis in nondenaturing systems indicated that MVH I and MVH II had a similar molecular mass of 145 kDa. Denatured MVH II showed four protein bands (alpha, 50 kDa; beta, 44 kDa; gamma, 36 kDa; delta, 15 kDa), similar to MVH I. The N-terminal amino acid sequences of the alpha, gamma, and delta subunits of MVH II were identical with the sequences of the equivalent subunits of MVH I. However, the N-terminal amino acid sequence of the beta subunit of MVH II was totally different from the sequence of the beta subunit of MVH I. Both MVH I and MVH II had the same optimal temperature of 60 degrees C for maximum activity. The pH optima of MVH I and MVH II were 9.0 and 7.5, respectively. Most of the divalent metal ions tested significantly inhibited MVH I activity, but MVH II activity was only partially inhibited by some divalent cations. Both hydrogenases were shown to be stable for over 8 days at --20 degrees C under anaerobic conditions. When exposed to air, 90% of MVH I activity was lost within 2 min; however, MVH II lost only 50% of its activity in 3 h.  相似文献   

10.
A hydrogenase operon was cloned from chromosomal DNA isolated from Desulfovibrio vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes that for the large subunit (566 residues; molecular mass = 62495 Da), as in other [NiFe] and [NiFeSe] hydrogenase operons. The amino acid sequences of the small and large subunits of the Miyazaki hydrogenase share 80% homology with those of the [NiFe] hydrogenase from Desulfovibrio gigas. Fourteen cysteine residues, ten in the small and four in the large subunit, which are thought to co-ordinate the iron-sulphur clusters and the active-site nickel in [NiFe] hydrogenases, are found to be conserved in the Miyazaki hydrogenase. The subunit molecular masses and amino acid composition derived from the gene sequence are very similar to the data reported for the periplasmic, membrane-bound hydrogenase isolated by Yagi and coworkers, suggesting that this hydrogenase belongs to the general class of [NiFe] hydrogenases, despite its low nickel content and apparently anomalous spectral properties.  相似文献   

11.
Clones carrying cDNA sequences for the delta subunit precursor of the acetylcholine receptor from calf skeletal muscle have been isolated. Nucleotide sequence analysis of the cloned cDNA has indicated that this polypeptide consists of 516 amino acids including a hydrophobic prepeptide of 21 amino acids. The delta subunit of the calf muscle acetylcholine receptor, like the alpha, beta and gamma subunits of the same receptor as well as the alpha and gamma subunits of its human counterpart, exhibits structural features common to all four subunits of the Torpedo electroplax receptor, apparently being oriented across the membrane in the same manner as proposed for the fish receptor subunits. The degree of amino acid sequence homology between the calf and Torpedo delta subunits (60%) is comparable to that between the beta subunits (59%) and to that between the gamma subunits (56%), but is lower than that between the alpha subunits of the two species (81%). This suggests that the alpha subunit evolved more slowly than the three other subunits. A dendrogram representing the sequence relatedness among the four subunit precursors of the mammalian and fish acetylcholine receptors has been constructed. Some regions of the delta subunit molecule, including the region containing the putative disulphide bridge and that encompassing the clustered putative transmembrane segments M1, M2 and M3, are relatively well conserved between calf and Torpedo. The relative pattern of regional homology is similar for all four subunit precursors.  相似文献   

12.
13.
14.
The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.  相似文献   

15.
The nucleotide sequences of the genes encoding the subunits of Klebsiella pneumoniae and Salmonella typhimurium type 1 fimbriae were determined. Comparison of the predicted amino acid sequences of the two subunits revealed domains in which the sequences were highly conserved. Both gene products possessed signal peptides, a fact consistent with the transport of the fimbrial subunit across the membrane, but these regions showed no amino acid homology between the two proteins. The predicted N-terminal amino acid sequences of the processed fimbrial subunits were in good agreement with those obtained by purification of the fimbrial subunits.  相似文献   

16.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

17.
Escherichia coli dnaZX, the gene which when mutant blocks DNA chain elongation, was cloned into a lambda PL promoter-mediated expression vector. In cells carrying this plasmid, the activity that complements a mutant dnaZ extract in replicating a primed single-stranded DNA circle was increased about 20-fold. Two polypeptides of 71 and 52 kDa were overproduced. Upon fractionation, two complementing activities were purified to homogeneity and proved to be the 71- and 52-kDa polypeptides. Immunoassays revealed their respective identities with the tau and gamma subunits of DNA polymerase III holoenzyme. The N-terminal amino acid sequences of the first 12 residues were identical in both subunits, as were their molar specific activities in dnaZ complementation. Thus, the tau subunit complements the defect in the mutant holoenzyme from the dnaZts strain as efficiently as does the gamma subunit. Inasmuch as the 71-kDa subunit (tau) can also overcome the enzymatic defect in a dnaX mutant strain, this polypeptide has dual replication functions, only one of which can be performed by the gamma subunit. Availability of pure tau and gamma subunits for study has provided the basis for proposing an asymmetry in the structure and function of a dimeric DNA polymerase III holoenzyme.  相似文献   

18.
19.
Bovine mitochondrial NADH-ubiquinone reductase (complex I), the first enzyme in the electron-transport chain, is a membrane-bound assembly of more than 30 different proteins, and the flavoprotein (FP) fraction, a water-soluble assembly of the 51-, 24-, and 10-kDa subunits, retains some of the catalytic properties of the enzyme. The 51-kDa subunit binds the substrate NAD(H) and probably contains both the cofactor, FMN, and also a tetranuclear iron-sulfur center, while a binuclear iron-sulfur center is located in the 24- or 10-kDa proteins. The 75-kDa subunit is the largest of the six proteins in the iron-sulfur protein (IP) fraction, and its sequence indicates that it too contains iron-sulfur clusters. Partial protein sequences have been determined at the N-terminus and at internal sites in the 51-kDa subunit, and the corresponding cDNA encoding a precursor of the protein has been isolated by using a novel strategy based on the polymerase chain reaction. The mature protein is 444 amino acids long. Its sequence, and those of the 24- and 75-kDa subunits, shows that mitochondrial complex I is related to a soluble NAD-reducing hydrogenase from the facultative chemolithotroph Alcaligenes eutrophus H16. This enzyme has four subunits, alpha, beta, gamma, and delta, and the alpha gamma dimer is an NADH oxidoreductase that contains FMN. The gamma-subunit is related to residues 1-240 of the 75-kDa subunit of complex I, and the alpha-subunit sequence is a fusion of homologues of the 24- and 51-kDa subunits, in the order N- to C-terminal. The most highly conserved regions are in the 51-kDa subunit and probably form parts of nucleotide binding sites for NAD(H) and FMN. Another conserved region surrounds the sequence motif CysXXCysXXCys, which is likely to provide three of the four ligands of a 4Fe-4S center, possibly that known as N-3. Characteristic ligands for a second 4Fe-4S center are conserved in the 75-kDa and gamma-subunits. This relationship with the bacterial enzyme implies that the 24- and 51-kDa subunits, together with part of the 75-kDa subunit, constitute a structural unit in mitochondrial complex I that is concerned with the first steps of electron transport.  相似文献   

20.
J Zhang  D W Chung  C K Tan  K M Downey  E W Davie  A G So 《Biochemistry》1991,30(51):11742-11750
The 125- and 48-kDa subunits of bovine DNA polymerase delta have been isolated by SDS-polyacrylamide gel electrophoresis and demonstrated to be unrelated by partial peptide mapping with N-chlorosuccinimide. A 116-kDa polypeptide, usually present in DNA polymerase delta preparations, was shown to be a degraded form of the 125-kDa catalytic subunit. Amino acid sequence data from Staphylococcus aureus V8 protease, cyanogen bromide, and trypsin digestion of the 125- and 116-kDa polypeptides were used to design primers for the polymerase chain reaction to determine the nucleotide sequence of a full-length cDNA encoding the catalytic subunit of bovine DNA polymerase delta. The predicted polypeptide is 1106 amino acids in length with a calculated molecular weight of 123,707. This is in agreement with the molecular weight of 125,000 estimated from SDS-polyacrylamide gel electrophoresis. Comparison of the deduced amino acid sequence of the catalytic subunit of bovine DNA polymerase delta with that of its counterpart from Saccharomyces cerevisiae showed that the proteins are 44% identical. The catalytic subunit of bovine DNA polymerase delta contains the seven conserved regions found in a number of bacterial, viral, and eukaryotic DNA polymerases. It also contains five additional regions that are highly conserved between bovine and yeast DNA polymerase delta, but these regions share little or no homology with the alpha polymerases. Four of these additional regions are also highly homologous to the herpes virus family of DNA polymerases, whereas one region is not homologous to any other DNA polymerase that has been sequenced thus far.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号