首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acute effects of ethylcholine mustard aziridinium ion (AF64A) and hemicholinium-3 (HC-3) on the release of endogenous acetylcholine (ACh) from isolated tissues were examined. Whereas addition of HC-3 (10−6–10−5 M) significantly reduced the output of ACh from isolated guinea-pig ileum longitudinal muscle strip elicited by 10 Hz stimulation, AF64A had no effect and even enhanced the release of radiolabel elicited by 1 Hz stimulation when this tissue was pre-loaded with [3H]choline. Similarly, HC-3 (10−5 M) reduced ouabain-induced endogenous ACh release from isolated rat hippocampus. Addition of AF64A (10−5−5 × 10−5 M) caused a slight increase in ACh release. In isolated rat cortex, however, AF64A did not affect ACh release. Moreover, AF64A caused a decrease in ouabain-stimulated ACh release from striatum. The present study indicates that: (a) the in vitro actions of AF64A differ from those of HC-3 and (b) the acute effects of AF64A on endogenous ACh release vary, depending on the tissues studied and the stimulation parameters used.  相似文献   

2.
Neuronal apoptosis in rat pheochromocytoma PC12 cells, which was confirmed by TUNEL (terminal transferase-mediated dUTP-biotin nick end-labeling) staining and detection of chromatin condensation, appeared within 8 h after nerve growth factor (NGF) deprivation. Prostaglandin (PG) E1 (10(-7)-10(6) M) reduced the incidence of apoptotic cell death in PC12 cells. The genes encoding PG transporter specific to prostaglandins such as PGE2 or PGF2alpha were expressed in the cell lines as shown by RT-PCR. Bromcresol green, an inhibitor of PG transporter, reversed the antiapoptotic effect of PGE1. Moreover, treatment of PC12 cells with an antisense oligonucleotide corresponding to PG transporter cDNA also blocked the inhibitory effects of PGE1 on apoptotic cell death. In addition, PGE1 counteracted the increased activities of stress-activated protein kinase/cJun N-terminal kinase within 1-2 h after NGF deprivation in PC12 cells. These results indicated that the antiapoptotic effect of PGE1 in NGF-deprived PC12 cells was achieved by inhibitory signals following uptake into neurons through the PG transporter.  相似文献   

3.
Since exogenous gangliosides are known to promote neuritogenesis, the incorporation of exogenous GM1 into neuroblastoma membranes was examined. Neuro-2A cells, synchronized in the G1/G0 phase, were suspended in HEPES buffered saline containing 10–4 M [3H]GM1, and membrane incorporation was measured as radioactivity remaining with the cell pellet following incubation with serum-containing medium and trypsin. Calcium ion (0.01 to 10 mM) reduced incorporation of exogenous GM1, due to its interaction with GM1 micelles in solution. When cells were treated with proteases prior to incubation with GM1, the inhibitory effect of Ca2+ was lost and total incorporation into membranes was lowered by approximately one order of magnitude. Pretreatment of cells with 0.05% trypsin resulted in an inhibition of GM1 incorporation within 5 minutes. When trypsinized cells were resuspended in complete growth medium, the cells recovered the ability to incorporate GM1 with time, and this paralleled labeling of cellular protein with [3H]leucine. The role of membrane protein in the incorporation of exogenous GM1 could not be explained by the lytic release of cytosolic transfer proteins nor the artifactual coating of the cell surface by serum proteins. These results suggest that the incorporation of exogenous gangliosides into cellular membrane lipid bilayers cannot be fully explained by considerations of lipophilicity alone, and leads us to propose that initial recognition by membrane protein(s) is necessary.Abbreviations used GM1 H3NeuAc-GgOse4Cer - HBS HEPES buffered saline - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum  相似文献   

4.
The cholinergic pathway ascending from the nucleus basalis magnocellularis (NBM) to the cortex has been implicated in several important higher brain functions such as learning and memory. Following infarction of the frontoparietal cortical area in the rat, a retrograde atrophy of cholinergic cell bodies and fiber networks occurs in the basalocortical cholinergic system. We have observed that neuronal atrophy in the NBM induced by this lesion can be prevented by intracerebroventricular administration of exogenous nerve growth factor (NGF) or the monosialoganglioside GM1. In addition, these agents can upregulate levels of cortical choline acetyltransferase (ChAT) activity in the remaining cortex adjacent to the lesion site. Furthermore, an enhancement in cortical high-affinity3H-choline uptake and a sustained in vivo release of cortical acetylcholine (ACh) after K+ stimulation are also observed after the application of neurotrophic agents. Moreover, these biochemical changes in the cortex are accompanied by an anatomical remodeling of cortical ChAT-immunoreactive fibers and their synaptic boutons.  相似文献   

5.
6.
Our previous study showed an impaired regulation of Ca(2+) homeostasis in cultured cerebellar granule neurons (CGN) from neonatal mice lacking GM2, GD2 and all gangliotetraose gangliosides, due to disruption of the GM2/GD2 synthase (GalNAc-T) gene. In the presence of depolarizing concentration (55 mM) K(+), these cells showed persistent elevation of intracellular Ca(2+) ([Ca(2+)]( i )) leading to apoptosis and cell destruction. This was in contrast to CGN from normal littermates whose survival was enhanced by high K(+). In this study we demonstrate that glutamate has the same effect as K(+) on CGN from these ganglioside-deficient knockout (KO) mice and that apoptosis in both cases is averted by exogenous GM1. Even more effective rescue was obtained with LIGA20, a semi-synthetic derivative of GM1. LC(50) of glutamate in the KO cells was 3.1 microM, compared to 46 microM in normal CGN. [Ca(2+)]( i ) measurement with fura-2 revealed no difference in glutamate-stimulated Ca(2+) influx between the 2 cell types. However, reduction of [Ca(2+)]( i ) following application of Mg(2+) was significantly impaired in the mutant CGN. The rescuing effects of exogenous GM1 and LIGA20 corresponded to their ability to restore Ca(2+) homeostasis. The greater potency of LIGA20 is attributed to its greater membrane permeability with resultant ability to insert into both plasma and nuclear membranes at low concentration (相似文献   

7.
Leptin increases human alpha1 (I) collagen mRNA and type I collagen production and enhances hepatic fibrosis in animal models of hepatic fibrosis. These effects of leptin on fibrogenesis may be mediated by TGFbeta1, since leptin increases the TGFbeta type II receptor and augments the effect of TGFbeta1 on collagen production by stellate cells. In this study, leptin increased the activity of the human alpha1 (I) collagen promoter in transfected stellate cells. Leptin did not further enhance the activation of the promoter induced by TGFbeta1. Leptin had no effects on the transfected TGFbeta-responsive p3TP-LUX plasmid, which contains 3 CAGA elements that are essential and sufficient for the induction by TGFbeta. Leptin did not increase significantly the binding of proteins to two TGFbeta1 responsive elements in the human alpha1 (I) collagen promoter. In conclusion, this study shows that leptin activates the alpha1 (I) collagen gene and that this effect is not mediated by TGFbeta responsive elements.  相似文献   

8.
Wild-type (WT) Rat-1 fibroblasts express undetectable quantities of the prostaglandin E(2) (PGE(2)) EP1, EP2, and EP3 receptor types and detectable amounts of the EP4 receptor. In the WT Rat-1, PGE(2) enhances connective tissue growth factor (CTGF) mRNA. PGE(2) does not stimulate cAMP production in these cells. However, forskolin induces cAMP production and ablates TGF beta-stimulated increases in CTGF mRNA. A similar pattern of CTGF expression in response to PGE(2) and forskolin is observed in neonatal rat primary smooth muscle cell cultures. When WT Rat-1 cells are stably transfected with the EP2 receptor, PGE(2) causes a sizable elevation in intracellular cAMP and ablates the TGF beta-stimulated increase in CTGF mRNA. PGE(2) does not have this effect on cells expressing the EP1, EP3, or EP4 receptor subtypes. These results demonstrate the importance of the EP2 receptor and cAMP in the inhibition of TGF beta-stimulated CTGF production and suggest a role for PGE(2) in increasing CTGF mRNA levels in the absence of the EP2 receptor. Involvement of inositol phosphate in this upregulation of CTGF expression by PGE(2) is doubtful. None of the cell lines containing the four EP transfectants nor the WT Rat-1 cells responded to PGE(2) with inositol phosphate production.  相似文献   

9.
10.
Patients with age related macular degeneration (AMD) have a loss of vision in the center of the visual field. Oxidative stress plays an important role in this progress. Nerve growth factor (NGF) is important for the survival and maintenance of sympathetic and sensory neurons and NGF eye drops improve visual acuity and electro-functional activity in patients with AMD. However, the molecular mechanisms and signaling events involved in this have not been fully investigated. Using cultured human retinal pigment epithelial (RPE) cells, we demonstrate here that NGF protects RPE cells against hydrogen peroxide (H2O2)-induced cell apoptosis. NGF also induces RPE cell migration, the latter is important for retinal regeneration and the recovery from AMD. H2O2 decreases S6 phosphorylation and cell viability, which is restored by NGF. Rapamycin, the pharmacologic inhibitor of mammalian target of rapamycin (mTOR), diminished NGF-induced S6 phosphorylation, cell migration and protective effects against oxidative stress. Collectively, we conclude that activation of rapamycin sensitive mTOR signaling mediates NGF induced cell migration and pro-survival effects in H2O2 treated RPE cells.  相似文献   

11.
This is the first structural evidence of alpha-tocopherol (alpha-TP) as a possible candidate against inflammation, as it inhibits phospholipase A2 specifically and effectively. The crystal structure of the complex formed between Vipera russelli phospholipase A2 and alpha-tocopherol has been determined and refined to a resolution of 1.8 A. The structure contains two molecules, A and B, of phospholipase A2 in the asymmetric unit, together with one alpha-tocopherol molecule, which is bound specifically to one of them. The phospholipase A2 molecules interact extensively with each other in the crystalline state. The two molecules were found in a stable association in the solution state as well, thus indicating their inherent tendency to remain together as a structural unit, leading to significant functional implications. In the crystal structure, the most important difference between the conformations of two molecules as a result of their association pertains to the orientation of Trp31. It may be noted that Trp31 is located at the mouth of the hydrophobic channel that forms the binding domain of the enzyme. The values of torsion angles (phi, psi, chi(1) and chi(2)) for both the backbone as well as for the side-chain of Trp31 in molecules A and B are -94 degrees, -30 degrees, -66 degrees, 116 degrees and -128 degrees, 170 degrees, -63 degrees, -81 degrees, respectively. The conformation of Trp31 in molecule A is suitable for binding, while that in B hinders the passage of the ligand to the binding site. Consequently, alpha-tocopherol is able to bind to molecule A only, while the binding site of molecule B contains three water molecules. In the complex, the aromatic moiety of alpha-tocopherol is placed in the large space at the active site of the enzyme, while the long hydrophobic channel in the enzyme is filled by hydrocarbon chain of alpha-tocopherol. The critical interactions between the enzyme and alpha-tocopherol are generated between the hydroxyl group of the six-membered ring of alpha-tocopherol and His48 N(delta1) and Asp49 O(delta1) as characteristic hydrogen bonds. The remaining part of alpha-tocopherol interacts extensively with the residues of the hydrophobic channel of the enzyme, giving rise to a number of hydrophobic interactions, resulting in the formation of a stable complex.  相似文献   

12.
Although some studies have suggested that troglitazone could retard the progression of glomerulosclerosis, its effects on renal tubulointerstitial fibrosis have not been completely clarified. The aim of this study was to investigate the effects of troglitazone on the secretion of connective tissue growth factor (CTGF) and fibronectin (FN) in human renal proximal tubular epithelial (HK-2) cells induced by transforming growth factor-beta1 (TGF-beta1). The mRNA of CTGF and FN were measured by semi-quantitative RT-PCR. CTGF and FN protein were detected by Western blot and ELISA, respectively. Our results revealed that troglitazone could inhibit CTGF and FN expression in a dose-dependent manner in human renal proximal tubular epithelial cells induced by TGF-beta1, which may be one of the mechanisms of troglitazone contributing to retard the progression of renal tubulointerstitial fibrosis.  相似文献   

13.
The effects of Cryptosporidium andersoni on human or bovine epithelia are poorly defined. Epidermal growth factor inhibits colonisation of the gastrointestinal epithelium with bacteria and the enteric protozoan parasite Giardia lamblia. This study characterised whether C. andersoni infects human or bovine epithelial cells in vitro, assessed its impact on apoptosis and tight junctional Zonula-Occludens-1, and determined whether these effects may be altered by epidermal growth factor. Monolayers of human colonic CaCo(2) cells, SCBN (non-malignant small intestinal epithelial cells), and Madin Darby bovine kidney epithelial cell lines (MDBK and NBL-1) were grown to confluency in Dulbecco's Modified Eagle Medium. Monolayers were assigned to one of three experimental groups-(1) control: exposed to culture medium alone; (2) untreated: exposed to 10(3) live C. andersoni oocysts or (3) epidermal growth factor-treated: apically pre-treated with recombinant human epidermal growth factor and then exposed to Cryptosporidium. Oocyst viability, infection with Cryptosporidium, apoptosis, and integrity of tight junctional Zonula-Occludens-1 were assessed. In addition, live Cryptosporidium oocysts were incubated with epidermal growth factor to assess whether epidermal growth factor had cryptosporicidial activity. Cryptosporidium andersoni oocysts infected all human and bovine monolayers, increased nuclear fragmentation, and disrupted Zonula-Occludens-1. Apical epidermal growth factor significantly reduced infection with C. andersoni in all cell lines and inhibited the Cryptosporidium-induced apoptosis and disruption of Zonula-Occludens-1. Epidermal growth factor did not affect oocyst viability.  相似文献   

14.
Vitamin E (RRR-α-tocopherol) is a lipid-soluble antioxidant that is present in the membranes of intracellular organelles. There it plays an important role in the suppression of free radical-induced lipid peroxidation. There are eight naturally occurring homologues of vitamin E that differ in their structure and in biological activity in vivo and in vitro. Although γ-tocopherol is a more effective free radical scavenger than α-tocopherol in vitro, the reverse is true in vivo, suggesting that the tocopherol distribution systems favor the localization of α-tocopherol at the sites where it is required. Vitamin E is transported in plasma primarily by lipoproteins, but little is known of how it is transported intracellularly. A 30 kDa α-tocopherol-binding protein in the liver cytoplasm may regulate plasma vitamin E concentrations by preferentially incorporating the vitamin E homologue, RRR-α-tocopherol (α-tocopherol), into nascent very low density lipoproteins. However, this α-tocopherol-binding protein is unique to the hepatocyte, whereas α-tocopherol is present in the cells of all major tissues. Moreover α-tocopherol accumulates at those sites within the cell where oxygen radical production is greatest and thus where it is most required; in the membranes of heavy mitochondria, light mitochondria, and endoplasmic reticulum. This raises the question of how the lipid-soluble α-tocopherol is transported intracellularly in different tissues. We have identified a new α-tocopherol-binding protein of molecular mass 14.2 kDa in the cytosol of heart and liver. This protein specifically binds α-tocopherol in preference to the δ- and γ-homologues but does not bind oleate. Studies on immunoreactivity and ligand specificity of the protein suggest that it is not a fatty acid-binding protein. The 14.2 kDa α-tocopherol-binding protein stimulates the transfer of α-tocopherol from liposomes to mitochondria in vitro by 8 to 10 fold. We suggest that this low molecular mass TBP may be responsible for the intracellular transport and distribution of α-tocopherol in the tissues.  相似文献   

15.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

16.
Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a recently discovered negative regulator of growth factor signaling. The LRIG1 integral membrane protein has been demonstrated to regulate various oncogenic receptor tyrosine kinases, including epidermal growth factor (EGF) receptor (EGFR), by cell-autonomous mechanisms. Here, we investigated whether LRIG1 ectodomains were shed, and if LRIG1 could regulate cell proliferation and EGF signaling in a paracrine manner. Cells constitutively shed LRIG1 ectodomains in vitro, and shedding was modulated by known regulators of metalloproteases, including the ADAM17 specific inhibitor TAPI-2. Furthermore, shedding was enhanced by ectopic expression of Adam17. LRIG1 ectodomains appeared to be shed in vivo, as well, as demonstrated by immunoblotting of mouse and human tissue lysates. Ectopic expression of LRIG1 in lymphocytes suppressed EGF signaling in co-cultured fibroblastoid cells, demonstrating that shed LRIG1 ectodomains can function in a paracrine fashion. Purified LRIG1 ectodomains suppressed EGF signaling without any apparent downregulation of EGFR levels. Taken together, the results show that the LRIG1 ectodomain can be proteolytically shed and can function as a non-cell-autonomous regulator of growth factor signaling. Thus, LRIG1 or its ectodomain could have therapeutic potential in the treatment of growth factor receptor-dependent cancers.  相似文献   

17.
18.
19.
Introduction: N-Nitrosomorpholine (NMOR), present in the workplace of tyre chemical factories, is a known hepatocarcinogen. This compound belongs to the group of N-nitrosamines, which are indirect-acting and require metabolic activation. However, the mechanism of its carcinogenic effect is not completely clear. Aims: The objective of this study was (i) to compare the DNA-damaging and clastogenic effects of NMOR in three cell lines (HepG2, V79 and VH10) with different levels of metabolizing enzymes and (ii) to determine the protective effects of Vitamins A, C and E against deleterious effects of NMOR. Methods: The exponentially growing cells were pre-treated with Vitamins A, C and E and treated with NMOR. Genotoxic effects of NMOR were evaluated by single-cell gel electrophoresis (SCGE, comet assay), while the chromosomal aberration assay was used for the study of clastogenic effects. Key results: NMOR-induced a significant dose-dependent increase of DNA damage as analyzed by SCGE, but the extent of DNA migration in the electric field was unequal in the different cell lines. Although the results obtained by SCGE confirmed the genotoxicity of NMOR in all cell lines studied, the number of chromosomal aberrations was significantly increased only in HepG2 and V79 cells, while no changes were observed in VH10 cells. In HepG2 cells pre-treated with Vitamins A, C and E we found a significant decrease of the percentage of tail DNA induced by NMOR. The reduction of the clastogenic effects of NMOR was observed only after pretreatment with Vitamins A and E; Vitamin C did not alter the frequency of NMOR-induced chromosomal aberrations under the experimental conditions of this study. Conclusions: The fat-soluble Vitamins A and E, which are dietary constituents, reduce the harmful effects of N-nitrosomorpholine in human hepatoma cells HepG2, which are endowed with the maximal capacity for metabolic activation of several drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号