首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The question whether during the process of cholinergic degeneration somatostatin- and/or neuropeptide Y-containing neurons in rat hippocampus and cortex react to the withdrawal of cholinergic function was addressed. After bilateral intracerebroventricular injection of the cholinotoxin ethylcholine aziridinium (AF64A; 1 or 2 nmol/ventricle) in rats, the activity of choline acetyltransferase (ChAT) started to decline in the hippocampus within 24 h. The reduction of ChAT activity reached its maximum within 4 days (34 and 55% after 1 and 2 nmol of AF64A/ventricle, respectively) and persisted during the observation period of 14 days. In the parietal cortex, ChAT activity decreased by 23% 4 days after 2 nmol of AF64A/ventricle. The loss in ChAT activity was accompanied by a transient decline in the levels of somatostatin and a transient increase in the levels of neuropeptide Y in both brain areas. In the hippocampus, the reduction in somatostatin content was most pronounced after 2 days (by 22 and 33% after 1 and 2 nmol of AF64A/ventricle, respectively). Within 14 days, somatostatin levels returned to control values. Neuropeptide Y levels increased slightly by approximately 25% of control values in the hippocampus. The changes described were present in both the dorsal and ventral subfields of the hippocampus. Similar but less pronounced changes in levels of both neuropeptides were observed in the parietal cortex. The present data provide further evidence for a close neuronal interrelationship between cholinergic and somatostatin- and/or neuropeptide Y-containing neurons in rat hippocampus and parietal cortex.  相似文献   

2.
Z Pittel  A Fisher  E Heldman 《Life sciences》1989,44(20):1437-1448
The effect of ethylcholine aziridinium ion (AF64A) after an intracerebroventricular (icv) injection was compared to that obtained after an intravascular administration. Reductions in choline acetyltransferase (ChAT) and acetylcholinesterase activities in the hippocampus but not in the cerebral cortex or the corpus striatum were observed 10 days after bilateral injection of AF64A into the rat cerebroventricles (3 nmol/side). However, when AF64A was injected into the carotid artery (1 mumol/kg) following a unilateral opening of the blood-brain barrier by a hypertonic treatment, a significant decrease in ChAT activity was observed in the ipsilateral side of the cerebral cortex but not in hippocampus, corpus striatum, or cerebellum. High-affinity choline transport was reduced significantly 11 days after an icv injection of AF64A in all the above mentioned brain regions, and recovered 60 days post injection in the cerebral cortex and in the corpus striatum but not in the hippocampus. Our results suggest that in various brain regions, AF64A causes various degrees of damage to cholinergic neurons, depending on the quantity of the toxin that reaches the target tissue.  相似文献   

3.
Ganglioside GM1 beta-galactosidase: studies in human liver and brain   总被引:10,自引:0,他引:10  
A microcolumn assay for ganglioside GM1 β-galactosidase (EC 3.2.1.23) has been developed using GM1 tritiated exclusively in the terminal galactose residue. The reaction is stimulated up to 100-fold by anionic and cationic detergents; this stimulation is inhibited by neutral detergents. 4-Methylumbelliferyl β-d-galactopyranoside is hydrolyzed about seven times more rapidly than GM1 in human brain (gray matter) and liver. Agarose gel filtration separated two forms of GM1 β-galactosidase in both brain and liver. The major form (ganglioside GM1 β-galactosidase A) had a molecular weight of 60–70 × 103 and the minor form (ganglioside GM1 β-galactosidase B) 600–800 × 103. The liver and brain GM1 β-galactosidases and 4-methylumbelliferyl β-galactosidase A cochromatographed on fractionation. The two forms of the enzyme in liver isolated by gel filtration corresponded to the two major forms found on starch gel electrophoresis and were converted to electrophoretically slower-moving forms after treatment with neuraminidase (EC 3.2.1.8, Cl. perfringens) suggesting that both are sialylated glycoproteins. The activity of GM1 β-galactosidase in the brain and liver tissue of patients with GM1 gangliosidosis Types I and II was less than 2% of control values. The mutation in each GM1 gangliosidosis appears to result in a severe reduction of activity of two ganglioside GM1 β-galactosidases.  相似文献   

4.
Abstract: Intracerebroventricular administration of N6, 2′-O-dibutyryladenosine 3′,5′-cyclic monophosphate (db-cyclic AMP) to mice increased high-affinity choline transport (HAChT) into synaptosomal preparations from the hippocampus, striatum, and frontal cortex in a time-dose-, and brain region-dependent manner. Similar observations were made when the cyclic AMP analogue 8-bromo-cyclic AMP, the adenylyl cyclase activator forskolin, and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine were administered. Inhibition of phosphatase 1 and 2A, with okadaic acid, increased basal choline transport and enhanced the response to db-cyclic AMP. The early increase of HAChT activity induced by db-cyclic AMP was blocked by H-7 and H-89, protein kinase A inhibitors, but not by cycloheximide, a protein synthesis inhibitor. Kinetic analysis of the early changes of HAChT revealed an increase in the apparent Vmax without a change of the Km for choline. Hemicholinium-3 (HC-3) binding was not altered when studied 1 h after db-cyclic AMP administration. In contrast, HC-3 binding and HAChT activity were both elevated when estimated 3 h after the treatment, and pretreatment with cycloheximide partially prevented the db-cyclic AMP-induced HAChT rise. As evidence that enhanced HAChT is associated with a direct action of cyclic AMP-dependent pathways on the cholinergic nerve terminals, addition of 8-bromocyclic AMP to isolated hippocampal synaptosomes induced an increase of HAChT that was prevented by H-89. Choline acetyltransferase activity was not affected at any time during the studies. The synthesis of acetylcholine, however, was enhanced 1 h after db-cyclic AMP addition. Our studies show that cyclic AMP-mimetic compounds appear to modulate the choline carrier by a dual mode: an early increase of the maximal velocity without a change of the number of HC-3 binding sites and a late rise of transport that is accompanied by an increase of HC-3 binding. We postulate that HAChT and consequently acetylcholine synthesis in vivo is modulated, in part, by protein kinase A.  相似文献   

5.
Heat labile enterotoxin from enterotoxigenic Escherichia coli is similar to cholera toxin (CT) and is a leading cause of diarrhea in developing countries. It consists of an enzymatically active A subunit (LTA) and a carrier pentameric B subunit (LTB). In the current study, we evaluated the importance of the N-terminal region of LTB by mutation analysis. Deletion of the glutamine (ΔQ3) residue and a substitution mutation E7G in the α1 helix region led to defects in LTB protein secretion. Deletion of the proline residue (ΔP2) caused a decrease in α helicity. The ΔP2 mutant affected GM1 ganglioside receptor binding activity without affecting LTB pentamer formation. Upon refolding/reassembly, the ΔP2 mutant showed defective biological activity. The single substitution mutation (E7D) strengthened the helix, imparting structural stability and thereby improved the GM1 ganglioside receptor binding activity. Our results demonstrate the important role of N-terminal α1 helix in maintaining the structural stability and the integrity of GM1 ganglioside receptor binding activity.  相似文献   

6.
The nerve growth factor (NGF) is known to participate in the regulation of the expression levels and activity of the choline acetyltransferase (ChAT) in the nervous system. This enzyme is sensitive to the degenerative changes found in Alzheimer's disease (AD). We compared the effectiveness of intraparenchymal (ip) and intracerebroventricular (icv) administration of the murine beta-NGF (beta-NGFm) produced in our laboratories, through the determination of the expression levels and activity of the ChAT, and the evaluation of behavioral recovery in aged rat with cognitive deficit. Our results indicated that icv infusion of beta-NGFm stimulates the expression levels of ChAT gene in the striatum of old rats. Remarkable losses in the ChAT activity were observed in the septum and striatum of old rats. Exogenous administration of beta-NGFm produced a significant increase of ChAT activity in these brain regions differentially according to the administration pathway. The behavioral studies demonstrated that the administration pathway is an important factor in order to obtain the best results for a neurorestorative treatment.  相似文献   

7.
为评价神经生长因子(NGF)、混合型神经节苷脂(GM)和单唾液酸神经节苷脂(GM1)对中枢胆碱能神经损伤早期的影响,在大鼠单侧隔-海马通路部分损伤后即时经脑室分别注入上述三种神经元营养因子,7d后取两侧海马分别测定乙酰胆碱(ACh)、胆碱乙酰基转移酶(ChAT)和胆碱酯酶(ChE)。损伤对照组(脑室注入盐水)术侧海马ACh含量保留率为对侧的20.3%,ChAT活力为50%,ChE活力为48.3%。给予NGF、GM或GM1的实验组,ACh含量保留率分别为34.9%,35.3%和47.7%;ChAT活力为77.4%,78.4%和69.2%;而ChE活力的保留率未见明显改变。这些神经元营养因子显著增加了大鼠隔-海马通路损伤后海马内ACh含量和ChAT活力,说明它们减轻了损伤侧海马胆碱能神经纤维的破坏,具有明显的损伤早期保护作用。  相似文献   

8.
Coligenoid, composed of the B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli, was separated into monomers in the presence of 2% propionic acid containing 6 M urea (pH 3.8). Monomers equilibrated against 0.75% or 0.5% propionic acid containing 3 M urea (pH 3.8) did not reassemble into coligenoid. Complexes of GM1 ganglioside and coligenoid in these buffers were detected by SDS-polyacrylamide gel electrophoresis, but those of the GM1 ganglioside and monomers were not. The binding ability of monomer to GM1 ganglioside in these buffers was about 1% of that of normal coligenoid by GM1-enzyme-linked immunosorbent assay. Moreover, monomers in these buffers reassembled into coligenoid by buffering against original TEAN buffer, and the binding ability of the resulting coligenoid to GM1 ganglioside was identical to that of native coligenoid. These data suggest that although coligenoid formation is important for the receptor binding of the B subunit, little binding ability to GM1 ganglioside remains in monomer of the B subunit.  相似文献   

9.
Effects of Cell Density on Lipids of Human Glioma and Fetal Neural Cells   总被引:2,自引:2,他引:0  
Abstract: Gangliosides, phospholipids, and cholesterol of human glioma (12-18) and fetal neural cells (CH) were analyzed at specified cell densities, from sparse to confluent. Total ganglioside sialic acid, phospholipid phosphorus, and cholesterol increased in the glioma cells on a per cell, mg protein, or mg total lipid basis two- to threefold as cell density increased 25-fold. These same three constituents in the fetal cells increased with cell density on a per cell and mg protein basis but not on a per mg total lipid basis. In glioma cells, the di- and trisialogangliosides (GD2+ GDlb+ GT1) increased from 1–2% of total ganglioside sialic acid at sparse densities to 7–8% at intermediate (logarithmic phase) densities to 10–13% at confluent densities. The set of simpler gangliosides (GM4+ GM3+ GM2) decreased from 50% of total ganglioside sialic acid at sparse glioma cell densities, to 36% at intermediate and 30% at confluent densities. In the fetal neural cells, the set of gangliosides (GM4+ GM3+ GM2) had about 48% of total ganglioside sialic acid in both sparse and confluent preparations. The fetal cells were twofold higher in GM3 (32.4 ± 2.1%) than the glioma cells (16.8 ± 1.6%), but lower in GMt (9.1 ± 0.9% versus 18.2 ± 1.8%), cell densities notwithstanding. Confluent cell preparations of both cell lines were consistently higher in ethanolamine plasmalogen than sparse cells. We conclude that in these two neural cell lines quantitative changes in ganglioside and phospholipid species occurred correlatively as cell densities increased. Higher glioma cell densities were associated with greater proportions of complex ganglioside species. These changes in cell membrane constituents during growth may result from cell contact and may indicate a role for them in cell growth regulation and/or differentiation.  相似文献   

10.
Summary A virally transformed, ganglioside GM1-deficient cell line binds 2% of the cholera toxin (choleragen) bound by the parent, line and is less responsive to choleragen with respect to adenylate cyclase stimulation. This biological response is maximal when 10% of choleragen-binding sites in the transformed line, or 0.5% in the parent line, are occupied. In contrast, in isolated fat cells saturation of binding and adenylate cyclase stimulation are seen at very similar concentrations.Incubation of ganglioside GM1 with intact cells increases choleragen binding (defined here as ganglioside incorporation) in the transformed cell line but does not enhance the biological response to choleragen. Stimulation of adenylate cyclase is enhanced in isolated fat cells, however, by exogenous ganglioside GM1. The binding and cyclase response in fat cells can be reduced by the addition of the inactive analog and competitive antagonist, choleragenoid, and there is recovery of the enzyme response and binding upon subsequent addition of exogenous GM1. Failure of enhancement in the transformed cell line is explained by the presence of a five- to tenfold excess of binding sites over the number required for the full biological effect of choleragen. Cells with a large excess of toxin receptors are relatively refractory to the blocking effects of choleragenoid on biological responses. Notably, untransformed cells, which contain large quantities of toxin receptor, cannot incorporate exogenously added ganglioside GM1. These findings suggest the possible existence in the cytoplasmic membrane of specific molecular structures, present in finite and limited number, for recognizing and accepting ganglioside molecules exposed to the external medium.  相似文献   

11.
The objective of this study was to determine the effect of age and chronic intracerebral administration of nerve growth factor (NGF) on the activity of the presynaptic cholinergic neuronal markers hemicholinium-sensitive high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) in the brain of Fisher 344 male rats. In 24-month-old rats, a substantial decrease in ChAT activity (30%) was measured in striatum, and decreases in HACU were found in frontal cortex (28%) and hippocampus (23%) compared with 4-month-old controls. Cholinergic neurons in brain of both young adult and aged rats responded to administration of exogenous NGF by increased expression of both phenotypes. In 4-month-old animals, NGF treatment at 1.2 micron/day resulted in increased activities of both ChAT and HACU in striatum (175 and 170%, respectively), frontal cortex (133 and 125%), and hippocampus (137 and 125%) compared with untreated and vehicle-treated 4-month-old animals; vehicle treatment had no effect on the activity of either marker. In 24-month-old animals treated with NGF for 2 weeks, ChAT activity was increased in striatum (179%), frontal cortex (134%), and hippocampus (119%) compared with 24-month-old control animals. Synaptosomal HACU in 24-month-old rats was increased in striatum (151%) and frontal cortex (128%) after 2 weeks of NGF treatment, but hippocampal HACU was not significantly different from control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Choline acetyltransferase (ChAT, acetyl-CoA:choline O-acetyltransferase, EC 2.3.1.6), involved in the learning and memory processes is responsible for the synthesis of acetylcholine. There are many discrepancies in literature concerning ChAT activity during brain aging and the role of amyloid beta peptides in modulation of this enzyme. The aim of the study was to investigate the mechanism of ChAT regulation and age-related alteration of ChAT activity in different parts of the brain. Moreover the effect of A peptides on ChAT activity in adult and aged brain was investigated. The enzyme activity was determined in the brain cortex, hippocampus and striatum in adult (4-months-old), adult-aged (14-months-old) and aged (24-months-old) animals. The highest ChAT activity was observed in the striatum. We found that inhibitors of protein kinase C, A, G and phosphatase A2 have no effect on ChAT activity and that this enzyme is not dependent on calcium ions. About 70% of the total ChAT activity is present in the cytosol. Arachidonic acid significantly inhibited cytosolic form of this enzyme. In the brain cortex and striatum from aged brain ChAT activity is inhibited by 50% and 37%, respectively. The aggregated form of A 25-35 decreased significantly ChAT activity only in the aged striatum and exerted inhibitory effect on this enzyme in adult, however, statistically insignificant. ChAT activity in the striatum was diminished after exposure to 1 mM H2O2. The results from our study indicate that aging processes play a major role in inhibition of ChAT activity and that this enzyme in striatum is selectively sensitive for amyloid beta peptides.  相似文献   

13.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

14.
The cholinergic pathway ascending from the nucleus basalis magnocellularis (NBM) to the cortex has been implicated in several important higher brain functions such as learning and memory. Following infarction of the frontoparietal cortical area in the rat, a retrograde atrophy of cholinergic cell bodies and fiber networks occurs in the basalocortical cholinergic system. We have observed that neuronal atrophy in the NBM induced by this lesion can be prevented by intracerebroventricular administration of exogenous nerve growth factor (NGF) or the monosialoganglioside GM1. In addition, these agents can upregulate levels of cortical choline acetyltransferase (ChAT) activity in the remaining cortex adjacent to the lesion site. Furthermore, an enhancement in cortical high-affinity3H-choline uptake and a sustained in vivo release of cortical acetylcholine (ACh) after K+ stimulation are also observed after the application of neurotrophic agents. Moreover, these biochemical changes in the cortex are accompanied by an anatomical remodeling of cortical ChAT-immunoreactive fibers and their synaptic boutons.  相似文献   

15.
E O'Keefe  P Cuatrecasas 《Life sciences》1977,21(11):1649-1653
Ganglioside GM1, which can insert spontaneously into the membrane of intact cells, has been measured after insertion into transformed fibroblasts by cholera toxin (choleragen) binding, for which ganglioside GM1 is the natural receptor. Choleragen binding is not altered in starved, quiescent cells over a four-day period. Dividing cells show decreased binding in proportion to cell division. Thus, neither dividing nor quiescent cells appear to metabolize or otherwise degrade this membrane component.  相似文献   

16.
GM3 or GM1 ganglioside exogenously added in chemically-defined medium incorporate equally into cells. However, only GM3 showed a significant growth inhibition to hamster fibroblasts (BHK). The GM3-fed cells became refractory to growth stimulation by fibroblast growth factor (FGF) in chemically-defined media. Radiolabeled FGF accumulated on GM3-fed cells, but not on GM1-fed cells. Both GM3 and GM1 did not directly interact with FGF. These data suggest that GM3 may regulate the function of the receptors for growth hormones.  相似文献   

17.
Abstract: Ganglioside composition of rat trigeminal nerve was studied during development in order to understand the changes that occur as a result of cellular differentiation in the nerve. The ganglioside composition of the trigeminal nerve was entirely different from that of brain. The major gangliosides in adult trigeminal nerve were GM3, GD3, and LM1 (sialosyl-lactoneotetraosylceramide or sialosylparagloboside). The structure of LM1 and other gangliosides was established by enzymatic degradation and by analysis of the products of acid hydrolysis. At 2 days after birth, when the Schwann cells were immature, GM3 and GD3 were the major gangliosides in the nerve, 50 and 18 mol %, respectively. As the nerve developed and Schwann cells proliferated and myelinated the axons, the mol % of GM3 and GD3 reduced and that of LM1 steadily increased. Polysialogangliosides did not change drastically with nerve development. The rate of deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids, cerebrosides, and sulfatides; thus, deposition appears to be localized mainly in the rat nerve myelin. LM1 also had long-chain fatty acids 22:0 and 24:0, which are not usually found in CNS gangliosides. The ganglioside pattern of the rat trigeminal nerve was very similar to that of rat sciatic nerve, but was different from that of rabbit and chicken sciatic nerve. The activity of the two key enzymes involved in the metabolism of GM3, viz., CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase and UDP-N-acetylgalactosamine:GM3-N-acetylgalactosaminyltransferase, was also studied during development of the nerve and brain. The developmental profiles of both enzymes were consistent with the amounts of GM3 present in the nerve.  相似文献   

18.
Immunization of mice with a synthetic GM3-lactam-BSA (bovine serum albumin) conjugate (designed to emulate the corresponding natural GM3-lactone conjugate), followed by fusion of splenocytes with myeloma cells, gave rise to more than 300 monoclonal hybridomas producing antibodies to GM3-lactam-BSA, which did not react with Glc-BSA and BSA. Eight antibody clones were randomly chosen from the positive 300 hybridomas. The eight clones, all belonging to the IgG class, were unreactive against GM3-ganglioside, whereas two antibodies (P5-1 and P5-3, both IgG1, ) reacted with GM3-ganglioside lactone. Binding of these two antibodies to the GM3-lactam-BSA conjugate was inhibited by soluble glycosides of GM2-, GM3-, and GM4-lactam and by GM3- and GM4-lactam, respectively, but not by Gb3 or asialo-GM1 and GM2-saccharides. A third antibody (P3; IgG2b, ) was inhibited by GM2-, GM3-, and GM4-lactam, but did not recognize GM3-ganglioside lactone.  相似文献   

19.
《Biophysical journal》2021,120(24):5530-5543
Gangliosides form an important class of receptor lipids containing a large oligosaccharide headgroup whose ability to self-organize within lipid membranes results in the formation of nanoscopic platforms. Despite their biological importance, the molecular basis for the nanoscopic segregation of gangliosides is not clear. In this work, we investigated the role of the ganglioside headgroup on the nanoscale organization of gangliosides. We studied the effect of the reduction in the number of sugar units of the ganglioside oligosaccharide chain on the ability of gangliosides GM1, GM2, and GM3 to spontaneously self-organize into lipid nanodomains. To reach nanoscopic resolution and to identify molecular forces that drive ganglioside segregation, we combined an experimental technique, Förster resonance energy transfer analyzed by Monte-Carlo simulations offering high lateral and trans-bilayer resolution with molecular dynamics simulations. We show that the ganglioside headgroup plays a key role in ganglioside self-assembly despite the negative charge of the sialic acid group. The nanodomains range from 7 to 120 nm in radius and are mostly composed of the surrounding bulk lipids, with gangliosides being a minor component of the nanodomains. The interactions between gangliosides are dominated by the hydrogen bonding network between the headgroups, which facilitates ganglioside clustering. The N-acetylgalactosamine sugar moiety of GM2, however, seems to impair the stability of these clusters by disrupting hydrogen bonding of neighboring sugars, which is in agreement with a broad size distribution of GM2 nanodomains. The simulations suggest that the formation of nanodomains is likely accompanied by several conformational changes in the gangliosides, which, however, have little impact on the solvent exposure of these receptor groups. Overall, this work identifies the key physicochemical factors that drive nanoscopic segregation of gangliosides.  相似文献   

20.
Biochemical studies in cat and human gangliosidosis   总被引:2,自引:0,他引:2  
The biochemical analysis of the hereditary neurological disease found in a family of Siamese cat is reported. The accumulation of GM1ganglioside in the brain was noted. Several glycosidase activities of these cat brains were compared with that of human gangliosidoses (Tay-Sachs disease and GM1-gangliosidosis). Glycosidase activities were estimated using ρ-nitrophenyl-glycosides, glucosyl-, galactosyl-ceramide and GM1-ganglioside as substrates. The results indicated the defect of the β-galactosidase activities for the ρ-nitrophenyl-β-galactoside and GM1-ganglioside in both cat and human GM1-gangliosidoses. Glycosidase activities for glucosyl- and galactosyl-ceramide were not changed in either gangliosidoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号