首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endocrine function of rat gonads with an experimentally reduced number of germ cells was examined to analyse the effect of germ cells on the surrounding somatic endocrine cells. Pregnant Wistar rats received a single i.v. injection of 10 mg/kg B.W. of Busulphan on day 15 of gestation to prevent fetal primordial germ cells from starting mitotic division. The gonadal growth and the number of germ cells in Busulphan-treated rats (B-rats) were severely arrested. Almost a normal testicular structure was formed in the males, while few follicular structures were formed in the females, suggesting that the presence of oocytes in the fetal ovary is a prerequisite to the formation of the follicle. The meiotic division of spermatogonia in B-rats, which started on day 20 as in controls, stopped before the completion of spermatogenesis, and germ cells disappeared by day 50. The remaining germ cells and the associated follicles in female B-rats also disappeared by day 60 after repeating irregular estrous cycles for approximately 1 month. Thereafter the ovary consisted of fibroblasts and morphologically interstitial-like cells. Vaginal opening occurred in B-rats on day 28-30, a-week earlier than in controls. Changes in serum GTH after ovariectomy and the estradiol treatment suggested the maturation of the negative feedback sensitivity to estradiol in this period, and besides, earlier estradiol production with less dependency on gonadotropin. The vaginal epithelium of B-rats was cornified continuously after day 60. The ovarian cells in this period did not luteinize either morphologically or functionally in response to an ovulatory dose of hCG. During the same period, the conversion rate from progesterone to estradiol in ovarian homogenates of B-rats was considerably higher than those of controls at any stage of the estrous cycle. High content of estradiol was detected in the testes of B-rats at any age. In male B-rats, both LH and FSH levels in serum were higher than controls. The serum testosterone concentration in B-rats was lower than the normal, while the testicular testosterone content was greater. In conclusion, with a decreased number of germ cells, the rat gonads of both sexes secrete estradiol very efficiently.  相似文献   

2.
Synaptonemal complexes of the repopulating spermatocytes of male rats were analyzed day by day using silver-stained surface spread nuclei between 8 and 25 days after restricting the germ cell population to spermatogonia by treatment of gossypol acetic acid at 30 mg/kg body weight/day for 70 days. The method allowed sequential analysis of male meiotic prophase on successive days after the last day of treatment. The leptotene cells appeared on day 11 and were characterized by a network of lateral elements and large nucleolar bodies in a diffuse mass. On day 13 the unpaired lateral elements and short stretches of synaptonemal complexes characteristic for zygotene could be seen. Pachytene nuclei showing 20 autosomal synaptonemal complexes and XY axes appeared on day 15. The diplotene cells were defined on day 22 by the loss of a complete synaptonemal complex set and by the appearance of disjoined lateral elements and persistent segments of synaptonemal complexes.  相似文献   

3.
Lymphoid-specific helicase (HELLS; also known as LSH) is a member of the SNF2 family of chromatin remodeling proteins. Because Hells-null mice die at birth, a phenotype in male meiosis cannot be studied in these animals. Allografting of testis tissue from Hells(-/-) to wild-type mice was employed to study postnatal germ cell differentiation. Testes harvested at Day 18.5 of gestation from Hells(-/-), Hells(+/-), and Hells(+/+) mice were grafted ectopically to immunodeficient mice. Bromodeoxyuridine incorporation at 1 wk postgrafting revealed fewer dividing germ cells in grafts from Hells(-/-) than from Hells(+/+) mice. Whereas spermatogenesis proceeded through meiosis with round spermatids in grafts from Hells heterozygote and wild-type donor testes, spermatogenesis arrested at stage IV, and midpachytene spermatocytes were the most advanced germ cell type in grafts from Hells(-/-) mice at 4, 6, and 8 wk after grafting. Analysis of meiotic configurations at 22 days posttransplantation revealed an increase in Hells(-/-) spermatocytes with abnormal chromosome synapsis. These results indicate that in the absence of HELLS, proliferation of spermatogonia is reduced and germ cell differentiation arrested at the midpachytene stage, implicating an essential role for HELLS during male meiosis. This study highlights the utility of testis tissue grafting to study spermatogenesis in animal models that cannot reach sexual maturity.  相似文献   

4.
During establishment of spermatogenesis at the prepubertal age, an early germ cells apoptotic wave occurs likely aimed to remove abnormal germ cells and to maintain a proper cell number ratio between maturating germ cells and Sertoli cells. Here we assessed Sertoli and germ cell apoptosis in relation to morphological parameters of Sertoli cell maturation in neonatal rats under the influence of testosterone, estradiol and FSH given alone or in combinations. From postnatal day (PND) 5th to 15th male rats were daily injected with: 1) 2.5 mg of testosterone propionate (TP), or 2) 12.5 microg of 17beta-estradiol benzoate (EB), or 3) TP+EB, or 4) 7.5 IU of human purified FSH (hFSH), or 5) hFSH+EB or solvents (control-C). Autopsy was performed on PND 16th. Sertoli cell nuclei area and incidence of seminiferous tubule lumen formation (LF) were taken as markers of Sertoli cell maturation. Sertoli and germ cell apoptosis was assessed using TUNEL method. In comparison with C, the area of Sertoli cell nuclei was significantly reduced after EB (25.7+/-2.0 vs. 30.9+/-1.6 microm2 for C, p<0.001) and increased after hFSH+EB (33.1+/-2.3 microm2, p<0.05). Incidence of LF was completely arrested by steroid hormone treatments given separately, significantly inhibited after TP+EB (median: 0.0%, vs. 2.0% for C p<0.05) and significantly enhanced after hFSH+EB (median: 51.0%, p<0.001). hFSH alone did not influence LF. Incidence of TUNEL positive Sertoli cells significantly increased after EB (median: 2.9% vs. 0.5% for C, p<0.05) or TP+EB (median: 2.2%, p<0.01) and was not affected by other treatments. Incidence of TUNEL positive germ cells increased significantly after EB alone (median: 4.4% vs. 2.5%, for C, p<0.01 ) and was significantly decreased by hFSH+EB (median: 0.5%, p<0.01). CONCLUSIONS: 1) Administration of testosterone or estradiol to immature rats inhibits Sertoli cell maturation. 2) Estradiol stimulates Sertoli and germ cell apoptosis while testosterone has no effect. 3) Testosterone eliminates estradiol--induced germ cell apoptosis when both hormones act in concert. 4) FSH in concert with estradiol, but neither one of the hormone alone, accelerate Sertoli cell differentiation and effectively inhibit germ cell apoptosis. 5) During seminiferous tubule maturation testosterone and the synergistic action of FSH with estradiol support germ cell survival while estradiol alone has an inhibitory, pro-apoptotic effect.  相似文献   

5.
Micromanipulation techniques were used to produce reconstituted one-cell mouse embryos after the fusion of fetal male germ cells 15.5 day post coitum with enucleated secondary oocytes. At this stage of development, male fetal germ cells are arrested at G1 of mitotic interphase. Two distinct populations of germ cells, differing in size and ploidy, were isolated from the genital ridge of a mid-term fetus. Oocytes that had received male germ cells from the population of smaller (mononuclear) germ cells developed as diploid one-cell reconstituted embryos. When the same procedures were used to produce reconstituted one-cell embryos using male fetal germ cells from a population of larger (multinucleate) cells, they exhibited ploidy of either 4x, 6x or 8x at metaphase of the first cell division. Although most reconstituted embryos (90 and 96%) developed to the two-cell stage, the proportion of embryos receiving small germ cells developed to blastocysts was much higher (62%) than that receiving large germ cells (4%). These studies indicate that not all fetal germ cells are diploid before the onset of meiosis and have identified procedures to produce reconstituted embryos from fetal germ cells that do not carry genome or chromosome anomalies.  相似文献   

6.
To examine the spermatogenesis (and spermiogenesis) cell population kinetics after gamma-irradiation, the frequency and fate of BrdU-labeled pre-meiotic spermatogenic cells (spermatogonia and pre-leptotene spermatocytes) and spermatogonial stem cells (SSCs) of the medaka fish (Oryzias latipes) were examined immunohistochemically and by BrdU-labeling. After 4.75 Gy of gamma-irradiation, a statistically significant decrease in the frequency of BrdU-labeled cells was detected in the SSCs, but not in pre-meiotic spermatogenic cells. The time necessary for differentiation of surviving pre-meiotic spermatogenic cells without delay of germ cell development was shortened. More than 90% of surviving pre-meiotic spermatogenic cells differentiated into haploid cells within 5 days after irradiation, followed by a temporal spermatozoa exhaust in the testis. Next, spermatogenesis began in the surviving SSCs. However, the outcome was abnormal spermatozoa, indicating that accelerated maturation process led to morphological abnormalities. Moreover, 35% of the morphologically normal spermatozoa were dead at day 6. Based on these results, we suggest a reset system; after irradiation most surviving spermatogenic cells, except for the SSCs, are prematurely eliminated from the testis by spermatogenesis (and spermiogenesis) acceleration, and subsequent spermatogenesis begins with the surviving SSCs, a possible safeguard against male germ cell mutagenesis.  相似文献   

7.
Male and female gametogeneses differ markedly in all mammals. While male germ cells are continuously being produced from stem cells throughout the reproductive life span, the number of female germ cells is fixed during prenatal development and, soon after birth, all of the oocytes are arrested in a modified diplotene, or dictyate, stage. Following puberty, dictyate oocytes are hormonally triggered to mature either singly or in groups, resulting in ovulation and the completion of the first meiotic division. It has been hypothesized that female mice are more susceptible to dominant lethal effects of intercalating agents than male mice because oocyte chromosomes, which are arrested in a diffuse state, are generally more accessable to intercalation than are the more condensed chromosomes present within most male germ cell stages. This hypothesis was further tested using the intercalating agent hycanthone methane-sulfonate. Effects of hycanthone were studied in maturing and primordial oocytes and in male germ cells throughout spermatogenesis. No induction of dominant lethality was observed for treated males while a significant increase in embryonic death, expressed around the time of implantation, was observed in females that mated within 4.5 days after treatment. These effects were the result of dominant lethal mutations induced in maturing oocytes and not of maternal toxicity as indicated by the presence of chromosomal aberrations observed at first-cleavage metaphase of zygotes obtained from treated females. These results add support to the hypothesis that certain intercalating chemicals, which are not mutagenic to male mice, may be mutagenic to females and point to a need for more in-depth studies of female-specific mutagenesis.  相似文献   

8.
Estrogens have a feminizing effect on gonadal differentiation in fish, amphibians, reptiles, and birds. However, the role of estrogen during gonadal differentiation in mammals is less clear. We investigated the effect of estrogen on gonadal differentiation of male tammar wallabies. Male pouch young were treated orally with estradiol benzoate or oil from the day of birth, before seminiferous cords develop, to Day 25 postpartum and were killed at Day 50 postpartum. In all estrogen-treated neonates, a decrease in gonadal volume, volume of the seminiferous cords, thickness of the tunica albuginea, and number of germ cells was found. The stage of treatment affected the magnitude of the response. Two of three male young born prematurely after 25 days of gestation and treated subsequently with estradiol had ovary-like gonads, with well-developed cortical and medullary regions and primordial follicle formation. Furthermore, at Day 50 postpartum, many (21%) of the germ cells in these sex-reversed ovaries were in the leptotene and zygotene stages of meiosis, similar to female germ cells at the same stage of development. In the other males born on Day 26 of gestation or later, estradiol treatment from the day of birth caused development of dysgenetic testes, with abnormal Sertoli cells, atrophy of the seminiferous tubules and tunica albuginea, and absence of meiotic germ cells. In this marsupial, therefore, estradiol can induce either partial or complete transformation of the male gonads into an ovary with meiotic germ cells. These results confirm that estrogen can inhibit early testicular development, and that testis determination occurs during a narrow window of time.  相似文献   

9.
The development of DNA and RNA synthesis in the germ cell population was studied after a 3H-thymidine or 3H-uridine pulse at each stage of spermatogenesis. The autoradiographic results show that the first sign (after 3 days in vitro) of cellular changes is an increase in RNA synthesis which reaches a maximum at day 5. DNA replication (premeiotic S phase) occurred at day 7, then cells entered meiotic prophase (day 9). Meiotic divisions and spermiogenesis occurred after 11 days. Silver grain counts permit the conclusion that RNA synthesis is clearly higher during premeiotic interphase (days 3-7) than during spermatogonial proliferation (day 0). It appears therefore that male meiotic differentiation in Nereidae is accompanied by increased RNA synthesis.  相似文献   

10.
11.
Conventionally housed 130-160 g adult male Japanese quail were given gossypol acetic acid (gossypol) im at 25 mg/kg in 0.5 ml of 10% EtOH for 12 and 24 days (Groups 1 and 2), respectively. One day after treatment was terminated they were allowed to mate with laying females individually for 20 days. Fertility was 0% from mating of the Group 1 birds on days 1-2 and increased to 25, 35, 55 and 65% on days 3-6 after cessation of gossypol treatment. At day 11, fertility was 80 vs 84% in controls, whereas hatchability was 70% for both. By comparison, eggs from Group 2 mated quail were infertile for up to 20 days after the termination of gossypol treatment. In a parallel experiment, the percent testes to body weight ratio in control and 7, 14, 21, and 28-day gossypol-treated quail was 2.5, 2.2, 1.8, 0.5, and 0.2%, respectively. In 12 vs 24-day treated birds, 7, 14, 21, and 28 days after gossypol treatment, the ratios were 1.0 vs 0.5%, 2.0 vs 0.8% and 2.8 vs 1.9%, respectively. The decreased fertility and hatachability, and testicular atrophy resulting from gossypol given to male quail was dose-time related. Furthermore, the androgen-dependent cloacal gland was drastically reduced in size by the treatment with gossypol. The mode of action of gossypol in male quail is different than it is in mammals in that the testicular size of mammals remains unchanged with long-term gossypol treatment. It is concluded that quail may be a useful avian animal model for investigating the antifertility effects of gossypol.  相似文献   

12.
Duration of antiestrogenic and antiimplantation action of CDRI-85/287, (2-(4-(2-N-piperidino)ethoxy phenyl)-3-phenyl(2H)benzo(2)pyran), was studied in rat. Pretreatment of ovariectomized immature rats with this compound caused translocation of cytoplasmic estrogen receptor (ER) to the nucleus and a marked depletion of cytoplasmic ER pool resulting in a nonresponsive state of the uterus to subsequent estrogen administration until day 4. While in rats pretreated with estradiol, increased cytoplasmic ER level made the uterus responsive to a second injection of estrogen. In the delayed implantation model, 85/287 pretreated rats were given estrone on days 4, 5 or 6 post-antiestrogen treatment. No implantations were observed after estrone administration on day 4, but were present when estrone was given on days 5 or 6. Summation of these results suggests the duration of action of 85/287 to be 3-4 days in rat.  相似文献   

13.
为了探讨HSF2 mRNA在热应激和超生理剂量睾酮诱导恒河猴生精细胞凋亡中的表达变化,我们建立了手术诱导单侧隐睾和注射大剂量11酸睾酮(TU)恒河猴动物模型,应用3′末端标记分析(TUNEL)和原位杂交方法,检测睾丸细胞的凋亡信号和HSF2的表达变化。TUNEL结果显示热应激和超生理剂量睾酮能够诱导生精细胞出现凋亡信号,它分别于处理后第5天和第30天达到最强,表明热应激和睾酮干扰精子发生可能是通过生精细胞凋亡的方式来实现的。HSF2 mRNA水平在生精细胞凋亡早期(凋亡信号达到最强以前)略有降低,而在凋亡高峰期之后其表达急剧下降。Hsf2基因与我们以前研究的Hsp70-2基因的表达具有时间上的相关性,表明HSF2蛋白可能调控Hsp70-2基因的表达,而且HSF2可能通过多种方式影响精子的发生以及抑制生精细胞的凋亡。  相似文献   

14.
Intramuscular administration of gossypol to normally cycling female rats induced an irregularity of the cyclic pattern for as long as the treatment was continued. Furthermore, administration of gossypol from days 0 (day of sperm-positive vaginal smear) to 8 of pregnancy prevented the normal maintenance of pregnancy. Serum values of progesterone and estradiol 17 beta in gossypol-treated normally cycling and pregnant rats were significantly lower than the control levels. The supplement of a combination of exogenous progesterone and estradiol 17 beta eliminated the inhibitory effects of gossypol on ovum implantation and the maintenance of pregnancy. Our results indicate that gossypol may have some usefulness in female fertility control.  相似文献   

15.
Male rats treated with estradiol dipropionate (250 mug) by subcutaneous injection on Day 5 of postnatal life failed to show maturation changes in the testis and epididymis at puberty. Histological examination at 60 days revealed inhibition of spermatogenesis at primary spermatocyte stage and atrophic Leydig cells. Epididymis presented infantile features and there was a marked reduction in the secretory activity as revealed by lowered concentration of sialic acid and glycerylphosphorylcholine. Testosterone therapy (1 mg/day) for a period 45 days prior to autopsy at 60 days failed to induce completion of spermatogenesis but restored the structural and functional integrity of the epididymis.  相似文献   

16.
17.
The rat mutant allele as is located on chromosome 12. Homozygous (as/as) males show arrested spermatogenesis, mainly at the pachytene spermatocyte stage. It is not clear whether this defective spermatogenesis is caused by a failure in a somatic cell component that supports spermatogenesis or in the germ cell itself. Spermatogonial transplantation was performed to identify the genetically defective site in the as/as testis. In experiment 1, germ cells collected from as/as testes were transplanted into the testes of immunodeficient mice and normal rats. In experiment 2, normal rat germ cells were transplanted into as/as testes. The results of experiment 1 showed arrest of spermatogenesis at the pachytene spermatocyte stage, accompanied by a characteristic morphological feature, i.e., the formation of inclusion-like bodies in the cytoplasm, in both rat and mouse recipients. These results revealed the intrinsic effect of the mutant gene(s) on germ cells. In experiment 2, no restoration of spermatogenesis was detected in the recipient testes despite thorough histological examination. These results suggest that defects in a somatic cell component in as/as testes prevent the donor germ cells from colonizing and regaining their spermatogenetic ability. When the seminiferous epithelium of the as/as testis was examined by electron microscopy, no morphological abnormalities, including the formation of ectoplasmic specializations between adjacent Sertoli cells, were observed in the somatic cell components. However, when cytochrome c was applied as a tracer material, it penetrated the tight junctions between the Sertoli cells, indicating dysfunction of the blood-testis barrier in the as/as testis. The lack of restoration of spermatogenesis in the as/as testis after transplantation of normal germ cells may have been caused by the unfavorable environment in the seminiferous epithelium resulting from the incomplete barrier system between adjoining Sertoli cells. The gene(s) at the as locus may have a role in both germ cell differentiation and the establishment of the blood-testis barrier.  相似文献   

18.
The germ cell-deficient (gcd) mouse mutation is a recessive, transgenic insertional mutation associated with the disruption of two Chr11 genes, Pog (proliferation of germ cells) and Vrk2 (vaccinia virus-related protein kinase 2). We have recently shown that like gcd/gcd mice, targeted Pog-/- males and females show virtually no spermatogenesis or oogenesis at 4-6 wk of age. Because Pog is deleted in gcd/gcd and Pog-/- mice, a comparison of the phenotypes of the two mouse models is appropriate. Here, we report that unlike in POG-deficient females, the germ cells in POG-deficient males eventually populate the seminiferous tubules at 9 wk, and fertility can be achieved by 12 wk. Homozygous gcd/gcd males did not show a similar degree of germ cell population, and most gcd/gcd males remained infertile at 16 and 22 wk of age. A comparison of the degree of germ cell deficiency at 13.5 days postcoitum and 1 day postpartum between Pog-/- and gcd/gcd males revealed that gcd/gcd males had far fewer germ cells than Pog-/- males at both time points. Our data suggest that Pog is essential for proper primordial germ cell proliferation in the embryonic stage but is not needed for spermatogonial proliferation after birth. Thus, the difference in the spermatogenetic potential in adult Pog-/- and gcd/gcd mice may result from the severity of germ cell deficiency rather than from the inability of gcd/gcd spermatogonia to proliferate efficiently. The greater deficiency of germ cells before the onset of spermatogenesis seen in gcd/gcd males compared to Pog-/- mice suggests either that the different background affects the outcome of Pog deletion or that Vrk2 has additional effects on germ cell development.  相似文献   

19.
Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n=7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P<0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact, ghrelin balanced Bax/Bcl-2 ratio toward at increase of Bax level in the spermatocytes and therefore may stimulate apoptosis in these germ cells. In contrast, ghrelin administration significantly suppressed proliferation-associated peptide PCNA in the spermatocytes as well as spermatogonia (P<0.05). Whereas, caspase-3 activity did not show any marked alteration during the experiment in both groups (P>0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.  相似文献   

20.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号