首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar basal apparatus of the brown alga Ectocarpus siliculosus was re‐investigated in details using transmission electron microscopy and electron tomography. As a result, three‐dimensional structures with spatial arrangement of bands and microtubular flagellar rootlets were observed. Fibrous structures linking the anterior flagellar basal body to the major anterior rootlet (R3) or the bypassing rootlet was newly discovered in this study. A direct attachment from the minor anterior rootlet (R4) to the anterior and posterior basal bodies was also discovered, as were attachments from the minor posterior rootlet (R1) to the deltoid striated band and from the major posterior rootlet (R2) to the posterior fibrous band. The microtubular flagellar rootlets were connected to the bands and to the anterior or posterior basal body. These bands may have a role in maintaining the spatial arrangement of the anterior and posterior flagellar basal bodies and the microtubular flagellar rootlets. A numbering system of the basal body triplets was established by tracing axonemal doublets in the serial sections. From these observations, the precise position of two flagellar basal bodies, bands, and flagellar rootlets was determined.  相似文献   

2.
A. R. Hardham 《Protoplasma》1987,137(2-3):109-124
Summary A correlated immunofluorescence and ultrastructural study of the microtubular cytoskeleton has been made in zoospores and young cysts ofPhytophthora cinnamomi. Labelling of microtubules using antibodies directed towards tubulin has revealed new details of the arrangement of the flagellar rootlets in these cells, and of the variability that occurs from cell to cell. Most of the variation exists at the distal ends of the rootlets, and may be correlated with differences in cell shape in these regions. The rootlets have the same right and left configuration in all zoospores. The arrangement of the rootlet microtubules at the anterior end of the zoospores raises the possibility that the microtubules on the left hand side of the groove may not comprise an independent rootlet which arises at the basal bodies.The absolute configuration of the flagellar apparatus has been determined from ultrastructural observations of serial sections. In the vicinity of the basal bodies, there is little, if any, variation between individuals, and the structure of the flagellar apparatus is similar to that described for related species of fungi. Two ribbon-like coils surround the central pair of microtubules at the distal tip of the whiplash flagellum, and clusters of intramembranous particles, similar to ciliary plaques, have been found at the bases of both flagella. There are two arrays of microtubules associated with the nucleus in the zoospores. One array lies next to the outer surface of the nuclear envelope, and probably functions in the shaping and positioning of the apex of the nucleus. The nuclear pores in this region are aligned in rows alongside these microtubules. The second array is formed by kinetochore microtubules which extend into a collar-like arrangement of chromatin material around the narrow end of the (interphase) nucleus. During encystment, all flagellar rootlets are internalized when the flagella are detached at the terminal plate. The rootlets arrays are no longer recognizable 5–10 minutes after the commencement of encystment.  相似文献   

3.
Zoospore ultrastructure (incl. flagellar apparatus) has been investigated in three species ofTrebouxia (T. glomerata, T. erici, T. pyriformis) and one species ofPseudotrebouxia (P. impressa) using an absolute configuration analysis. Zoospores in all taxa studied are nearly identical in ultrastructure and exhibit a very distinctive disposition of cell organelles: cells are naked, biflagellate and considerably flattened along the plane of flagellar beat, the single contractile vacuole is located anteriorly in the ventral region of the cell, the nucleus is anteriorly to centrally located in the dorsal region of the cell. A single dictyosome is located close to the anterior, ventral edge of the nucleus. The chloroplast occupies a posterior position in the cell and usually has an anterior profile in the left region of the cell. There are two branched mitochondria per cell or a single mitochondrial reticulum with profiles anterior to the nucleus (in the dorsal region of the cell), and posterior to the nucleus. In zoospores ofTrebouxia spp. the posterior mitochondrial profile is associated with a microbody, inP. impressa zoospores the anterior mitochondrial profiles are associated with a microbody. The zoospores contain a distinctive system of three ER-cisternae: one system links to both basal bodies and extends to the nucleus, the other two systems subtend the plasmamembrane on the left and right broad cell surfaces and extend to the posterior region of the cell. The flagellar apparatus is structurally identical to that previously described for zoospores ofFriedmannia israelensis and exhibits basal body displacement by one basal body diameter into the 11/5 o'clock direction, a non-striated distal connecting fiber, a cruciate microtubular root system lacking system I fibers and presence of a single system II fiber which connects the basal bodies with the nucleus and runs parallel to one of the ER-strands. The left flagellar roots (X-roots) are subtended by a complex set of amorphous and striated material that connects each left root with both basal bodies.—This study demonstrates the close systematic relationship between the phycobiontsTrebouxia andPseudotrebouxia and the generaFriedmannia, Pleurastrum, andMicrothamnion and supports recent classification schemes which place all these taxa into a single order separate from otherChlorophyta. Dedicated to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

4.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

5.
Nine species ofNeochloris can be divided into three groups on the basis of comparative ultrastructure of the flagellar apparatus, the cell wall and the pyrenoid of zoospores. In Group I,N. wimmeri andN. minuta, zoospores are thin-walled, pyrenoids are penetrated by stromal channels, and the basal bodies are in the clockwise absolute orientation and connected by the distal and two proximal fibers. In Group II,N. aquatica, N. vigenis, N. terrestris, N. pyenoidosa, andN. pseudostigmatica, zoospores are naked or covered by fuzzy material, pyrenoids are covered by a continuous starch sheath or invaginated by cytoplasmic channels, basal bodies are directly opposed, the distal fiber is differentiated into a ribbed structure at the central region, a striated microtubule-associated component (SMAC) is continuous between opposite two-membered rootlets and connected to the ribbed structure, proximal ends of basal bodies are covered by partial caps, each two-membered rootlet and a basal body are connected by a striated fiber to the X-membered rootlet associated with the opposite basal body, and the basal bodies, when oriented at wide angles, are joined at their proximal ends by core extensions. In Group III,N. pseudoalveolaris andN. cohaerens, zoospores are naked, pyrenoids are traversed by parallel thylakoids, basal bodies are in the counterclockwise absolute orientation and overlapped, and each X-membered rootlet is connected to the end of the opposite basal body by a terminal cap. It is suggested that the genusChlorococcopsis gen. nov. be erected for the Group I species. Group II, which includes the type species,N. aquatica, should be preserved asNeochloris. The group appears to be closely related to the coenobial generaPediastrum, Hydrodictyon, andSorastrum, and to have affinities with the coenocytic generaSphaeroplea andAtractomorpha as well. It is also suggested that the genusParietochloris gen. nov. be erected in thePleurastrophyceae for the species of Group III.  相似文献   

6.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

7.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

8.
The absolute configuration of the flagellar apparatus of biflagellate zoospores of Enteromorpha flexuosa (Wulfen ex Roth.) J. Agardh ssp. pilifera (Kütz.) Bliding was determined. Viewed from the anterior of the cell, the flagellar apparatus shows 180° rotational symmetry with a counter-clockwise absolute orientation of its components. In longitudinal sections, the posteriorly directed basal bodies form an angle of about 170°–180° to one another. A reduced striated distal fiber connects the two basal bodies. The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. Striated microtubule-associated components (SMACs or system I-fibers) and rhizoplasts (or system II fibers) accompany the two-membered rootlets. Striated bands connect the proximal sheaths with the four-Membered rootlets. The bilobate terminal caps do not completely cover the proximal ends of the basal bodies. This is the first ultrastructural study of biflagellate zoospores in a member of the Ulvales.  相似文献   

9.
K. Lundin 《Zoomorphology》1997,117(2):81-92
 The fine morphology of epidermal ciliary structures in four species of the Nemertodermatida and four species of the Acoela was studied, with emphasis on Meara stichopi (Nemertodermatida). The cilium of M. stichopi has a distal shelf and is proximally separated from the basal body by a cup-shaped structure. The bottom of the cup consists of a bilayered dense plate, or basal plate. The basal body consists of peripheral microtubule doublets continuous with those of the cilium. In the upper part of the basal body, the doublets are set at an angle and are anchored to the enclosing cell membrane by Y-shaped structures. The lower part of the basal body tapers eventually. The striated main rootlet arises on the anterior face of the basal body, initially like a flattened strap, and continues along the basal body shaped as a tube which further down becomes solid. The hour-glass-shaped posterior rootlet arises on the posterior face of the basal body. Contrary to the main rootlet, the striations in the proximal part of the posterior rootlet run parallel to the microtubule doublets of the basal body. A pair of microtubule bundles lead from the posterior rootlet to the two main rootlets in the hind ciliary row, and follow these to their lower tip. In the other species of the Nemertodermatida studied, the structure of the ciliary basal body and the ciliary rootlets is similar to that of M. stichopi. Structural differences in the species of the Acoela are that the lowermost end of the basal body is narrow and bent forwards, the proximal part of the main rootlet is trough-shaped, the main rootlet is accompanied by a pair of lateral rootlets and the posterior rootlet with associated microtubule bundles is thin. The epidermal ciliary structures in species of the Nemertodermatida and Acoela have a number of shared characters which are unique within the Plathelminthes. However, almost all of these characters are found in Xenoturbella bocki (Xenoturbellida), and some even in species of other ”phyla” of the ”lower” Metazoa. Hence, these characters cannot be considered apomorphic for the Acoelomorpha. A character seemingly present only in species of the Nemertodermatida and Acoela is the bilayered dense plate. This feature might represent an autapomorphic character state for the Acoelomorpha. Accepted: 7 March 1997  相似文献   

10.
Summary Immunofluorescence microscopy, conventional and high voltage transmission electron microscopy were used to describe changes in the flagellar apparatus during cell division in the motile, coccolithbearing cells ofPleurochrysis carterae (Braarud and Fagerlund) Christensen. New basal bodies appear alongside the parental basal bodies before mitosis and at prophase the large microtubular (crystalline) roots disassemble as their component microtubules migrate to the future spindle poles. By prometaphase the crystalline roots have disappeared; the flagellar axonemes shorten and the two pairs of basal bodies (each consisting of one parental and one daughter basal body) separate so that each pair is distal to a spindle pole. By late prometaphase the pairs of basal bodies bear diminutive flagellar roots for the future daughter cells. The long flagellum of each daughter cell is derived from the parental basal bodies; thus, the basal body that produces a short flagellum in the parent produces a long flagellum in the daughter cell. We conclude that each basal body in these cells is inherently identical but that a first generation basal body generates a short flagellum and in succeeding generations it produces a long flagellum. At metaphase a fibrous band connecting the basal bodies appears and the roots and basal bodies reorient to their interphase configuration. By telophase the crystalline roots have begun to reform and the rootlet microtubules have assumed their interphase appearance by early cytokinesis.Abbreviations CR1, CR2 crystalline roots 1 and 2 - CT cytoplasmic tongue microtubules - DIC differential interference contrast light microscopy - H haptonema - HVEM high voltage transmission electron microscopy - IMF immunofluorescence microscopy - L left flagellum/basal body - M metaphase plate - MT microtubule - N nucleus - R right flagellum/basal body - R1, R2, R3 roots 1, 2, and 3 - TEM transmission electron microscopy  相似文献   

11.
Summary The anterior end of the zoospore ofUlothrix belkae has been examined in detail and is compared toStigeoclonium and other filamentous green algae. The nature of the symmetry of green algal motile cells is discussed and the term, 180° rotational symmetry, is proposed to describe the type of arrangement of anterior end components seen inU. belkae, including the four basal bodies, rootlets and striated fibers. The four microtubular rootlets are cruciately arranged. A striated microtubule-associated component (SMAC) has a periodicity of 6.4 nm and extends with each 2-membered rootlet posteriorly into the cell. One 5-membered rootlet passes very near the eyespot. Phylogeny in green algal motile cells is discussed.  相似文献   

12.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

13.
The biflagellate zoospores ofProtoderma sarcinoidea and the quadriflagellate zoospores ofChamaetrichon capsulatum are each covered by an amorphous, mucous material and a single layer of square scales, and the pyrenoid matrix is traversed by one or more thylakoid membranes. In the flagellar apparatus the basal bodies ofP. sarcinoidea and the upper basal bodies ofC. capsulatum are displaced in the counterclockwise absolute orientation, while the lower basal bodies ofC. capsulatum are directly opposed. Other components of the flagellar apparatus observed in each alga include: cruciately arranged d and s rootlets, each associated with an electron-dense component; simple terminal caps comprised of large and small subunits; a terminal electron-dense mass located near the proximal end of each basal body inP. sarcinoidea and near the upper basal bodies inC. capsulatum; and two rhizoplasts. Components specific to one or the other species include a single accessory basal body inP. sarcinoidea and a fibrous, electron-opaque band that links the upper and the lower basal bodies inC. capsulatum. The flagellar apparatus architecture ofP. sarcinoidea resemblesGayralia oxysperma, while that ofC. capsulatum is similar toTrichosarcina polymorphum andUlothrix species, all of which are included in theUlothrix-group,Ulotrichales, Ulvophyceae.  相似文献   

14.
The organization of microtubular systems in the quadriflagellate unicell Polytomella agilis has been reconstructed by electron microscopy of serial sections, and the overall arrangement confirmed by immunofluorescent staining using antiserum directed against chick brain tubulin. The basal bodies of the four flagella are shown to be linked in two pairs of short fibers. Light microscopy of swimming cells indicates that the flagella beat in two synchronous pairs, with each pair exhibiting a breast-stroke-like motion. Two structurally distinct flagellar rootlets, one consisting of four microtubules in a 3 over 1 pattern and the other of a striated fiber over two microtubules, terminate between adjacent basal bodies. These rootlets diverge from the basal body region and extend toward the cell posterior, passing just beneath the plasma membrane. Near the anterior part of the cell, all eight rootlets serve as attachment sites for large numbers of cytoplasmic microtubules which occur in a single row around the circumference of the cell and closely parallel the cell shape. It is suggested that the flagellar rootless may function in controlling the patterning and the direction of cytoplasmic microtubule assembly. The occurrence of similar rootlet structures in other flagellates is briefly reviewed.  相似文献   

15.
16.
The three-dimensional structure of the flagellar apparatus of Uroglena americana Calkins (Uroglenopsis americana [Calkins] Lemmerman) was determined using serial section reconstruction. The three microtubular rootlet systems (R2, R3, and R4) follow the general pattern found in other chrysophytes. The R2 rootlet originates between the basal bodies of the mastigoneme-bearing long flagellum (F1) and the short smooth flagellum (F2) and is attached to the former by a fibrous connection. The R3 rootlet system originates as a trough-shaped band of six microtubules spanning the distance between the proximal ends of the F1 and F2 basal bodies. The six-membered rootlet splits into two parts (designated R3 and R3) which circle the depression from which the F2 flagellum emerges in counter-clockwise direction. These two rootlets pass beneath the F2 basal body and descend into the cell alongside the chloroplast. The R4 rootlet originates in fibrous material which passes diagonally over the F2 basal body, forms a clockwise loop about three-quarters of the way around the depression, and ends in the cytoplasm. In place of a typical chrysophyte R1 rootlet, U. americana has a different array of microtubules attached to the F1 basal body which we have designated the descending rootlet (DR). This rootlet is a hairpin-shaped structure lying just below the surface of the cell; its longitudinal axis is predominantly parallel to the longitudinal axis of the cell. The DR resembles the bypassing rootlet which occurs in phaeophyte zoospores. Other chrysophytes may possess rootlets which are similar to the DR found in Uroglena.  相似文献   

17.
M. Melkonian 《Protoplasma》1981,108(3-4):341-355
Summary The flagellar apparatus of the quadriflagellate scaly green algaPyramimonas obovata has been studied in detail and the absolute configuration of the flagellar apparatus has been determined. The flagellar root system is cruciate (4-2-4-2-system). 18 major basal body associated fibrous structures connect the four basal bodies with each other. Each basal body is linked to an adjacent basal body by a unique set of connecting fibres, i.e., the flagellar apparatus does not exhibit 180° rotational symmetry. The flagellar apparatus ofPyramimonas obovata is compared with that of quadriflagellate motile cells of theChlorophyceae sensu Stewart andMattox and the phylogenetic relationships are discussed.  相似文献   

18.
Summary Antibodies raised against the calcium-binding protein centrin, were used to identify and localise centrin containing structures in the flagellar apparatus of zoospores and cysts of the oomycetePhytophthora cinnamomi. Immunoblotting of extracts from zoospores indicates that theP. cinnamomi centrin homologue is a 20 kDa protein. Immunofluorescence microscopy with anti-centrin antibodies reveals labelling in the flagella, the basal body connector and co-localisation along the microtubular R1 root (formerly called AR3) that runs from the right side of the basal body of the anterior flagellum into the anterior of the zoospore close to the ventral surface. The centrin (R1cen) and tubulin components of the R1 root split into four loops on the right hand side of the ventral groove and rejoin along the left hand side of the groove. The R1 root continues down the left hand side of the zoospore past the basal bodies and parallel to the R4 root. We propose that at least inP. cinnamomi there is no R2 root. Immunogold labelling confirms that centrin is a component of the basal body connector complex. When the zoospores become spherical during encystment, the R1cen pivots by approximately 90 ° with respect to the nucleus.  相似文献   

19.
The three-dimensional structure of the flagellar apparatus of Dinobryon cylindrioum Imhof. (UTEX no. LB 2266) was determined using serial section reconstruction. Four microtubular rootlet systems (R1, R2, R3, and R4)and a rhizoplast are present, following the general pattern found in other chrysophytes. The R1 rootlet, containing seven microtubules, originates at the basal body of the long flagellum that bears mastigonemes (F1). The R1 rootlet forms an arc which curves in clockwise direction (when viewed from the anterior end of the cell) approximately halfway around the pit from which the short smooth flagellum (F2) emerges. Numerous microtubules cascade from the exterior-facing side of this rootlet to the tail of the cell. The R2 rootlet originates between the F1 and F2 basal bodies, is attached to the F1 basal body by a fibrous connection, and forms a clockwise arc above the R1 rootlet. This rootlet extends approximately one quarter of the way around the pit. The R3 rootlet system originates as a trough-shaped band of six microtubules spanning the distance between the proximal ends of the F1 and F2 basal bodies. The six-membered rootlet splits into two parts, designated R3 and R3. Both parts circle the pit in counter-clockwise direction, pass beneath the F2 basal body, and descend into the cell alongside the chloroplast. The R4 rootlet originates in fibrous material, passes diagonally over the top of the F2 basal body, forms a clockwise loop at least three quarters of the way around the pit to the interior of the R3 and R3 rootlets, and ends in the cytoplasm. Similarities of rootlet origins and other details of the flagellar apparatus of D. cylindricum with those of other heterokont organisms reinforce the idea that these organisms are phylogenetically related.  相似文献   

20.
Summary Flagellar development during cell division was studied inCyanophora paradoxa using agarose-embedded cells, Nomarski optics and electronic flash photography. The cells bear two heterodynamic and differently oriented (anterior and posterior) flagella. Prior to cell division, cells produce two new anterior flagella while the parental anterior flagellum transforms into a posterior flagellum. The parental posterior flagellum remains a posterior flagellum throughout this and subsequent cell divisions. The development of a single flagellum thus extends through at least two cell cycles and flagellar heterogeneity is achieved by semiconservative distribution of the flagella during cell division. Based on these principles a universal numbering system for basal bodies and flagella of eukaryotic cells is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号