首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transepithelial transport of polymeric immunoglobulins is an essential process in the mucosal immune system. Transport across the epithelial cells of mucous or exocrine glands is affected by an integral membrane glycoprotein receptor known as membrane secretory component (SCm) or as polymeric immunoglobulin receptor (pIgR). This receptor binds polymeric immunoglobulins at the basolateral cell surface and mediates their transcellular translocation and their release from the apical plasma membrane into external secretions. Release depends on cleavage of the membrane-anchoring domain of the receptor, resulting in liberation of polymeric immunoglobulin bound to the ectoplasmic domain of the receptor (secreted SC or SCs) into extracellular secretions. Using a monoclonal antibody directed against the cytoplasmic tail of the receptor and a polyclonal antibody directed against the secreted ectoplasmic domain, we have combined cell fractionation and Western blotting techniques to examine the fate of these receptor domains in the hepatocyte. In this study, we characterize biochemically and morphologically the various subcellular components separated by our fractionation scheme, and correlate this with biochemical analysis of the receptor in each fraction.  相似文献   

2.
Hybridomas secreting monoclonal antibodies to transferrin receptor (TFR) were isolated. One of these antibodies, U-1, recognized the cytoplasmic domain of TFR and the others, N-2 and W-3, recognized its cell surface domains. Only antibody W-3 competed with transferrin (TF) for binding to TFR. Antibody U-1 bound to purified TFR but not to 35S- or 125I-TFR in cell extracts. 125I-Antibody U-1 bound to TFR alone in cell extracts when TFR was bound to antibody N-2-Sepharose 4B, but even in the presense of cell extracts it did not bind to TFR bound to antibody W-3-Sepharose 4B. Antibody W-3 co-precipitated TFR and a protein of about 30 kDa from cell extracts, and also reacted with the 30 kDa protein in cell extracts in the absence of TFR. Based on these results, the existence of two different states of the cytoplasmic domain of TFR is discussed.  相似文献   

3.
Polyclonal and monoclonal antibodies were raised against a synthetic peptide containing the 15 carboxy-terminal amino acids (497-511) of vesicular stomatitis virus glycoprotein (VSV-G). The polyclonal antibodies (alpha P4) reacted with epitopes distributed along the 15-residue peptide, whereas the monoclonal antibody (P5D4) reacted with one epitope containing the five carboxy-terminal amino acids. Both types of antibodies recognized the cytoplasmic domain of VSV-G synthesized by tissue culture cells infected with the temperature-sensitive 045-VSV mutant (ts045-VSV). They recognized immature forms of VSV-G in the rough endoplasmic reticulum (RER) and Golgi complex, as well as mature VSV-G at the cell surface and in budding virus. The effect of these antibodies on intracellular transport and maturation of VSV-G was studied by microinjection. Both divalent antibodies (alpha P4 and P5D4) blocked transport of VSV-G to the cell surface. Monovalent Fab' fragments of alpha P4 (alpha P4-Fabs) also interfered with the appearance of VSV-G at the cell surface; Fab fragments of P5D4 (P5D4-Fabs), however, had no inhibitory effect. These results suggest that accessibility of a cytoplasmic domain, located within the sequence of amino acids 497-506 of the carboxy-terminal tail, is essential for transport of VSV-G to the cell surface.  相似文献   

4.
R Solari  J P Kraehenbuhl 《Cell》1984,36(1):61-71
Secretory IgA dimer antibodies in exosecretions provide the primary immunological defense for mucosal surfaces. Transmission of IgA2 across the epithelia of mucous and exocrine glands is mediated by a receptor called secretory component (SC). Using three antibodies directed against different domains of SC, we examine its processing in the lactating rabbit mammary gland. SC is synthesized as a core glycosylated transmembrane glycoprotein on the rough endoplasmic reticulum. Pulse-chase experiments reveal the time course of SC maturation in the Golgi, as demonstrated by the acquisition of Endo H resistance (30-60 min). The subsequent routing of SC to the basolateral plasma membrane, where IgA2 binding and endocytosis occurs, the cleavage of the membrane anchoring domain of SC, and the exocytosis from the apical plasma membrane of IgA, bound to the ectoplasmic domain of SC takes place rapidly (30-60 min). Thus maturation in the Golgi may represent the rate limiting step in SC routing. We also demonstrate that SC exists in several conformational states that are processed at different rates.  相似文献   

5.
A systematic approach for the determination of epitope specificities of monoclonal antibodies to a complex antigen system is described. After initial screening to identify antigen-binding monoclonal antibodies, one or more of the clones are isolated by limiting dilution cloning, grown in ascites, and the resulting antibodies secreted into the ascitic fluid are affinity purified on Sepharose-bound protein A, radiolabeled, and cross-compared with antibodies from other clones by a solid-phase competitive immunoassay. In this work, BALB/c mice were immunized with either purified carcinoembryonic antigen (CEA) or the CEA-producing cell line HC 84S. Spleen cells were fused with the mouse myeloma cell line Sp2/0-Ag14. The supernatants from 25 hybrids showed a significant binding of 125I-CEA (greater than or equal to 15%). Nine hybrids were cloned, resulting in 33 different clones. The antibodies produced by the different cloned hybrids and the remaining uncloned hybrids recognized a total of five different epitopes on CEA. All of the epitopes reside on the protein moiety of the molecule as determined by antibody binding to deglycosylated CEA. The monoclonal antibodies with five different epitope specificities were reacted with tissue sections of normal and cancerous tissues and with peripheral blood smears. Each of the five monoclonal antibodies reacted with tissue sections from colonic, gastric, lung, and mammary carcinomas, as well as from a benign colonic polyp and a resection margin from a colonic carcinoma. Four monoclonals reacted with normal liver tissue. Granulocytes in peripheral blood smears bound three antibodies strongly and one antibody weakly, and one antibody was not bound. One monoclonal antibody that reacted with normal liver tissue was not bound by granulocytes. The ability of these five monoclonal antibodies to differentially detect three different CEA-related antigens in normal and malignant tissues may have clinical utility.  相似文献   

6.
A total of 16 hybrid myeloma clones secreting monoclonal antibodies (McAb) to rabbit or human serum low-density lipoprotein (LDL) were derived from the fusion of spleen cells from LOU or DA rats immunized with rabbit or human LDL and the rat myeloma lines Y3 Ag1.2.3 or YB2/0. Anti-(rabbit LDL) McAb showed limited reactivity with LDL from human, rhesus-monkey, rat and mouse serum. Six out of seven anti-(human LDL) McAb reacted with rhesus-monkey LDL, and only one showed partial cross-reaction with rabbit LDL. Binding-competition experiments indicated that the epitopes recognized by the anti-(rabbit LDL) IgG could be grouped into two major clusters: McAb in the first cluster reacted either with apo-(lipoprotein B-100) (apoB-100) and apo-(lipoprotein B-74) (apoB-74) or with apoB-100 but not with apo-(lipoprotein B-48) (apoB-48), the lower-Mr form of apoB of intestinal origin; the McAb in the second cluster all reacted with apoB-48 in addition to apoB-100 or apoB-100 and apoB-74. The six anti-(human LDL) IgG bound to separate epitopes on LDL. Further data on the epitope specificity of these McAb were obtained by antibody blotting after partial proteolysis of apoB-100 with trypsin or staphylococcal V8 proteinase, and the data confirmed the results obtained with the binding-competition experiments. One McAb to rabbit LDL inhibited the binding of LDL to the fibroblast LDL receptor (50% inhibition at a McAb/LDL molar ratio of 10). A similar result was produced by two other McAb at higher concentrations of antibody.  相似文献   

7.
Monoclonal antibodies that bound to the external domain of the rabbit low density lipoprotein receptor-related protein (LRP) were taken into rabbit fibroblasts by receptor-mediated endocytosis. Uptake occurred in fibroblasts from Watanabe-heritable hyperlipidemic rabbits, which lack low density lipoprotein receptors, as well as in normal rabbit fibroblasts. The fate of the internalized antibodies differed, depending on the domain of LRP that was recognized. LRP is synthesized as a single polypeptide chain that is cleaved to form a heterodimer of two noncovalently bound proteins, 1) a 515-kDa subunit that contains the binding domain, and 2) an 85-kDa subunit that contains the membrane-spanning region and cytoplasmic tail. A monoclonal antibody directed against the 515-kDa subunit (anti-LRP 515) rapidly dissociated from LRP at pH 5.2. After uptake by cells this antibody dissociated from the receptor and was degraded in lysosomes. A second antibody directed against the external portion of the 85-kDa subunit (anti-LRP 85) failed to dissociate at acid pH. After uptake by cells this antibody was not degraded, but instead was released from the cells in an acid-precipitable form. When administered intravenously to rabbits, both 125I-labeled antibodies were rapidly cleared from the circulation, 75-95% of the uptake occurring in the liver. The anti-LRP 515 antibody was degraded and acid-soluble products appeared in the plasma. No significant acid-soluble products appeared when the anti-LRP-85 antibody was infused. We conclude that LRP can carry out receptor-mediated endocytosis and that its ligand-binding domain, like the similar domain of the low density lipoprotein receptor, undergoes an acid-dependent conformational change that ejects ligands within the endosome. We also conclude that in the body this endocytotic function is expressed primarily in the liver. Both of these conclusions lend support to the hypothesis that LRP may function in humans and animals as a receptor for apolipoprotein E-enriched lipoproteins, such as chylomicron remnants.  相似文献   

8.
9.
Epitopes associated with a synthetic hepatitis B surface antigen peptide   总被引:5,自引:0,他引:5  
A synthetic peptide (SP1), corresponding to the amino acid residues 122 through 137 of the major polypeptide derived from hepatitis B surface antigen (HBsAg), subtype ayw, was analyzed for the presence of the major epitopes of HBsAg. Both a cyclic form, produced by introduction of an intrachain disulfide bond, and a linear form of the peptide were characterized. A panel of monoclonal antibodies with defined specificity for the cross-reactive group a antigenic determinant(s) and for the y and w subtype specificities was used for this analysis. The cyclic, but not the linear, form of SP1 reacted with five of 14 anti-a monoclonal antibodies, demonstrating that the cyclic peptide contains a conformation-dependent a epitope. Only one anti-a antibody was found to react with both cyclic and linear forms of SP1. Because SP1 failed to react with the remaining 8 anti-a monoclonal antibodies, it was concluded that the a antigenic reactivity associated with HBsAg contains an additional epitope(s) unrelated to that expressed on SP1. Both cyclic and linear SP1 reacted with three of three anti-y monoclonal antibodies, indicating that a sequential y epitope is also present on SP1; no w reactivity was detected. Analysis of the idiotypes associated with the monoclonal antibodies showed those that combined with cyclic SP1 also inhibited the binding of a common human anti-HBs (CHBs) idiotype with its rabbit anti-idiotype serum, whereas a monoclonal antibody that did not react with the cyclic SP1 epitope failed to inhibit the CHBs idiotype-anti-idiotype reaction. Thus, the conformational a epitope present on cyclic SP1 appears to contain the predominant epitope recognized by humans in response to a natural HBV infection.  相似文献   

10.
Monoclonal antibodies (2-3E2, 6-3G11, and 7-3H6) against gap junction plaques purified from rat liver were prepared and characterized. Immunoblot analysis of liver gap junctions revealed that all three antibodies reacted with the 27-kDa protein, but not with the 22-kDa one. The 2-3E2 and 6-3G11 antibodies both reacted with the 27-kDa protein in gap junctions purified from livers of the rat, mouse, rabbit, and guinea pig; the 7-3H6 antibody, however, failed to react with the 27-kDa protein from guinea pig liver. The 7-3H6 antibody reacted strongly with the 24- to 26-kDa degradation products of the 27-kDa protein. Indirect immunofluorescence showed that the 6-3G11 and 7-3H6 antibodies both gave the same specific fluorescence labeling on rat liver cryosections, suggesting that these two antibodies recognized the cytoplasmic sites of the 27-kDa protein. Immunoblot analysis of protease-digested fragments from the 27-kDa protein revealed that the 7-3H6 antibody reacted with the 24- and 17-kDa fragments (including portions of the carboxyl-terminal domain of the 27-kDa protein) produced with endoproteinases Arg-C and Lys-C, respectively. Immunoblot analysis of CNBr fragments of the 27-kDa protein revealed that all three antibodies reacted with the 10-kDa fragment, which is thought to be the carboxyl-terminal domain of the 27-kDa protein. These results demonstrate that three monoclonal antibodies recognize different epitopes of the cytoplasmic sites (probably the carboxyl-terminal domain) of the 27-kDa liver gap junction protein.  相似文献   

11.
Intracellular alphavirus nucleocapsids express a binding site for the cytoplasmic domain of the viral E2 spike glycoprotein. This binding site is recognized by the anti-idiotype monoclonal antibody, F13. The monoclonal anti-anti-idiotype antibody, raised against F13 and designated 3G10, recognizes the carboxy-terminal eight residues of the E2 cytoplasmic domain in Semliki Forest virus (SFV), identifying this as the signal for nucleocapsid interaction. F13 binding to cells infected with SFV or a second alphavirus, Sindbis virus, is inhibited by a synthetic peptide corresponding to the entire 31 residue cytoplasmic domain (E2c), and also by a synthetic peptide corresponding to the eight residue epitope recognized by 3G10. Both E2c and the eight residue peptide inhibited viral budding in microinjection experiments and when conjugated to colloidal gold are bound specifically to nucleocapsids in infected cells. These results identify a short linear signal in the E2 cytoplasmic domain required for the interaction with nucleocapsids which leads to budding of at least two alphaviruses from infected cells.  相似文献   

12.
Secretory component (SC) is an integral membrane glycoprotein of secretory epithelial cells which is responsible for the specific transport of polymeric Ig (PIg) to external mucosal surfaces. The ectoplasmic segment which binds polymeric Ig is comprised of five Ig-type domains. Chemically and enzymatically modified forms of the ectoplasmic portion of SC (FSC) were produced and tested for their ability to bind to PIgA and PIgM. Deglycosylated FSC bound specifically to PIg, indicating that N-linked carbohydrate moieties on FSC are not required for binding. Denatured, reduced, and alkylated FSC did not bind to PIgA, and bound to PIgM with significantly reduced affinity, suggesting that native conformation of the polypeptide backbone of SC was important to binding. Tryptic fragments of FSC which bound to PIg were isolated and identified to be derived from domain I of SC. Synthetic peptides comprising overlapping portions of domain I bound to PIg to varying degrees. The strongest affinity was demonstrated by a peptide comprised of residues 15 to 37 of SC. A comparison of the amino acid sequences of human, rabbit, and rat SC indicated that this region contained a high degree of residue identity (78%) and may represent a consensus sequence for binding of FSC to PIg. Importantly, the peptide comprised of residues 15 to 37 was also recognized by a monoclonal antibody, 6G11, which inhibited the binding of FSC to PIgA. These results demonstrate that the binding of human SC to PIg is critically dependent on a highly conserved peptide region within the first domain of SC centering at residues 15-37.  相似文献   

13.
A mouse monoclonal antibody, WIC 29.26 Ab, has previously been characterized as recognizing a carbohydrate epitope on a 72,000 m.w. glycoprotein (GP72) expressed on the surface of Trypanosoma cruzi epimastigotes and metacyclic trypomastigotes. This molecule has been implicated as a receptor in the control of parasite transformation, and when used as an immunogen in mice, partially protects against T. cruzi infection. In previous experiments in which a radioimmunoassay was used, WIC 29.26 Ab was found to react with approximately 50% of T. cruzi strains and clones derived from a variety of sources. In this study, we attempted to determine whether the WIC 29.26 Ab-nonreactive isolates lack the entire GP72 or merely lack the epitope recognized by this monoclonal antibody. WIC 226.4 Ab, a monoclonal antibody raised against periodate-treated GP72, reacted in an immunofluorescence assay with all strains and clones studied, including those which had not reacted with WIC 29.26 Ab. Likewise, two polyvalent rabbit sera, directed specifically against GP72, bound to all T. cruzi isolates tested. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of detergent lysates of surface-labeled epimastigotes immunoprecipitated with WIC 29.26 Ab showed that the epitope bound by this antibody was present in all but one of the parasites that were surface-nonreactive, as well as in all those that were surface-reactive. WIC 29.26 Ab precipitated a single 72K Mr band from most strains and clones, but in several cases 79K Mr and 66K Mr bands were seen. Isolates from both the surface-reactive and the surface-nonreactive groups showed the latter pattern. These results demonstrate that GP72, or similar electrophoretic variants--and with one exception, the carbohydrate epitope bound by WIC 29.26 Ab--are present in the surface membrane of all strains and clones tested. This observation suggests that in intact epimastigotes of the surface-nonreactive isolates, the epitope is not accessible because of structural changes in the molecule itself or because of differences in the membrane environment of GP72.  相似文献   

14.
Lin M  Lin F  Mallory M  Clavijo A 《Journal of virology》2000,74(24):11619-11625
The major structural glycoprotein E2 of classical swine fever virus (CSFV) is responsible for eliciting neutralizing antibodies and conferring protective immunity. The current structural model of this protein predicts its surface-exposed region at the N terminus with a short stretch of the C-terminal residues spanning the membrane envelope. In this study, the N-terminal region of 221 amino acids (aa) covering aa 690 to 910 of the CSFV strain Alfort/187 E2, expressed as a fusion product in Escherichia coli, was shown to contain the epitope recognized by a monoclonal antibody (WH303) with affinity for various CSFV strains but not for the other members of the Pestivirus genus, bovine viral diarrhea virus (BVDV) and border disease virus (BDV). This region also contains the sites recognized by polyclonal immunoglobulin G (IgG) antibodies of a pig hyperimmune serum. Serial deletions of this region precisely defined the epitope recognized by WH303 to be TAVSPTTLR (aa 829 to 837) of E2. Comparison of the sequences around the WH303-binding site among the E2 proteins of pestiviruses indicated that the sequence TAVSPTTLR is strongly conserved in CSFV strains but highly divergent among BVDV and BDV strains. These results provided a structural basis for the reactivity patterns of WH303 and also useful information for the design of a peptide containing this epitope for potential use in the detection and identification of CSFV. By deletion analysis, an antigenic domain capable of reacting with pig polyclonal IgG was found 17 aa from the WH303 epitope within the N-terminal 123 residues (aa 690 to 812). Small N- or C-terminal deletions introduced into the domain disrupt its reactivity with pig polyclonal IgG, suggesting that this is the minimal antigenic domain required for binding to pig antibodies. This domain could have eliminated or reduced the cross-reactivity with other pestiviruses and may thus have an application for the serological detection of CSFV infection; evaluation of this is now possible, since the domain has been expressed in E. coli in large amounts and purified to homogeneity by chromatographic methods.  相似文献   

15.
The epitope for monoclonal antibody A20 was mapped to amino acids 870-890 of the Ca2(+)-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum. The antibody did not react with the epitope in intact sarcoplasmic reticulum vesicles but reacted with the epitope when the vesicles were solubilized with the detergent C12E8 or made permeable by incubation in a hypotonic medium. By contrast, antibody A52, which binds to a cytoplasmic epitope consisting of amino acids 657-672, reacted with the Ca2(+)-ATPase in vesicular, permeabilized vesicular, and C12E8-solubilized states. These results clearly demonstrate that antibody A20 binds to a luminal epitope and provide the first demonstration that a specific segment of the Ca2(+)-ATPase is located on the luminal surface of the sarcoplasmic reticulum. These results are consistent with, and support, our model for folding of the Ca2(+)-ATPase (Brandl, C. J., Korczak, B., Green, N. M., and MacLennan, D. H. (1986) Cell 44, 597-607) in which residues 657-672 were proposed to form part of the cytoplasmic nucleotide binding domain, while residues 870-890 were proposed to form a luminal loop between proposed transmembrane sequences M7 and M8.  相似文献   

16.
Human monoclonal antibodies (MAbs) were selected from semisynthetic antibody phage display libraries by using whole irradiated severe acute respiratory syndrome (SARS) coronavirus (CoV) virions as target. We identified eight human MAbs binding to virus and infected cells, six of which could be mapped to two SARS-CoV structural proteins: the nucleocapsid (N) and spike (S) proteins. Two MAbs reacted with N protein. One of the N protein MAbs recognized a linear epitope conserved between all published human and animal SARS-CoV isolates, and the other bound to a nonlinear N epitope. These two N MAbs did not compete for binding to SARS-CoV. Four MAbs reacted with the S glycoprotein, and three of these MAbs neutralized SARS-CoV in vitro. All three neutralizing anti-S MAbs bound a recombinant S1 fragment comprising residues 318 to 510, a region previously identified as the SARS-CoV S receptor binding domain; the nonneutralizing MAb did not. Two strongly neutralizing anti-S1 MAbs blocked the binding of a recombinant S fragment (residues 1 to 565) to SARS-CoV-susceptible Vero cells completely, whereas a poorly neutralizing S1 MAb blocked binding only partially. The MAb ability to block S1-receptor binding and the level of neutralization of the two strongly neutralizing S1 MAbs correlated with the binding affinity to the S1 domain. Finally, epitope mapping, using recombinant S fragments (residues 318 to 510) containing naturally occurring mutations, revealed the importance of residue N479 for the binding of the most potent neutralizing MAb, CR3014. The complete set of SARS-CoV MAbs described here may be useful for diagnosis, chemoprophylaxis, and therapy of SARS-CoV infection and disease.  相似文献   

17.
Fcalpha/mu receptor (Fcalpha/muR), a novel Fc receptor for IgA and IgM, is a type I transmembrane protein with an immunoglobulin (Ig)-like domain in the extracellular portion. Although IgA and IgM bind to Fcalpha/muR, the molecular and structural characteristics of the ligand-receptor interactions have been undetermined. Here, we developed twelve monoclonal antibodies (mAbs) against murine Fcalpha/muR by immunizing mice deficient in Fcalpha/muR gene. Eight mAbs totally or partially blocked IgA and IgM bindings to Fcalpha/muR. These blocking mAbs bound to a peptide derived from the Ig-like domain of murine Fcalpha/muR, which is conserved not only in human and rat Fcalpha/muR but also in polymeric Ig receptor (poly-IgR), another Fc receptor for IgA and IgM. These results suggest that IgA and IgM bind to an epitope in the conserved amino acids in the Ig-like domain of Fcalpha/muR as well as poly-IgR.  相似文献   

18.
19.
Monoclonal antibodies were prepared to localize the domain(s) of laminin to which tumor cells adhere. Rat Y3-Ag 1.2.3 myeloma cells were fused with spleen cells from a rat immunized with a purified 440-kDa fragment of chymotrypsin-digested laminin. Three monoclonal antibodies (AL-1 to AL-3) that bound to intact laminin in a solid-phase radioimmunoassay were chosen for further analysis. The epitopes recognized by these antibodies were characterized by radioimmunoassays, immunoblotting, radioimmunoprecipitation, and immunoaffinity chromatography. In cell adhesion assays, monoclonal antibody AL-2 inhibited the binding of the highly metastatic melanoma cell line, K-1735-M4, to both intact laminin and the 440-kDa fragment of laminin. Electron microscopic examination of laminin-monoclonal antibody interactions showed that monoclonal antibody AL-2 reacted with the long arm of laminin directly below the cross-region. Two monoclonal antibodies that failed to inhibit tumor cell adhesion to laminin reacted with epitopes on the lateral short arms or cross-region of laminin as seen by electron microscopy. These results suggest that a new tumor cell binding domain of laminin may be located close to the cross-region on the long arm of laminin.  相似文献   

20.
A monoclonal anti-idiotypic antibody (H10E4C9F) that interacts with the aldosterone receptors was generated using an auto-anti-idiotypic approach by immunizing a mouse with a 3-O-carboxymethyloxime of aldosterone coupled to bovine serum albumin. This antibody, an IgG1, displayed internal image properties of aldosterone and was considered as an Ab2 beta according to the following criteria. (i) H10E bound to Fab fragments of affinity-purified rabbit anti-aldosterone antibody that had high affinity for aldosterone (Kd = 5 x 10(-10) M). Binding was inhibited by aldosterone but not by estradiol. (ii) H10E inhibited [3H]aldosterone binding to rabbit polyclonal antibodies and also to murine monoclonal antibodies raised during the same fusion. Inhibition was concentration-dependent. These results are consistent with the antibody recognizing an interspecies cross-reacting epitope involved in the aldosterone combining site. (iii) The antibody could be affinity-purified on an immobilized monoclonal anti-aldosterone antibody. (iv) It inhibited [3H]aldosterone binding to rabbit kidney cytosolic aldosterone receptors but had no effect on glucocorticoid receptors. Additional evidence for the interaction of H10E with aldosterone receptors was provided by glycerol gradients analyses: the anti-idiotypic antibody displaced [3H]aldosterone and [3H]corticosterone from the native untransformed 9 S aldosterone receptor in the presence of RU 26988, a specific marker of glucocorticoid receptors. All of the above are consistent with the first successful production of a monoclonal antibody that mimics aldosterone and interacts specifically with the steroid binding domain of aldosterone receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号