首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrophic gains of carbon from various host species by the root hemiparasitic shrub Olax phyllanthi (Labill) R.Br. were assessed using techniques based on carbon isotope discrimination (13C) on C3 and C4 hosts and C:N ratios of xylem sap and dry matter of host and parasite. Heterotrophic benefits (H) to Olax based on 13C values were 30% and 19% from two nonnative C4 hosts (Portulaca oleracea and Amaranthus caudatus respectively) compared with 13% and 15% from these hosts when computed on the basis of C:N ratios of host xylem sap and C and N increments of Olax dry matter. Nitrate was the source of N available to pot cultures of the above species and estimates based on C:N ratios assumed that all N accumulated by Olax had come from nitrate absorbed by the host. Equivalent estimates of H for Olax, grown in nitrogen-free pot culture with the native N2-fixing host Acacia littorea as its sole source of N, indicated 63% and 51% dependence on host carbon when assessed in terms of xylem sap composition of host parasite respectively. Comparisons of xylem sap solutes of Olax and a range of partner hosts indicated marked selectivity in haustorial uptake and transfer of nitrate, amino compounds, organic acids and sugars. Possible implications of variations between hosts in absolute levels of C and inorganic and organic forms of N in xylem are discussed in relation to evidence of much better growth performance of Olax on Acacia littorea and other N2-fixing legumes than on non-fixers.  相似文献   

2.
The amino acid compositions of the root xylem saps of Olax phyllanthi and a range of its common hosts were examined in native coastal heath in Western Australia and in pot cultures of Olax reliant on single hosts. When hosts specializing in the xylem transport of one major solute (asparagine, glutamine, histidine, arginine or proline) were exploited, the endophytic tissue of haustoria and the xylem sap of Olax showed much lower proportions of this than of other solutes, suggesting pronounced metabolic transformation prior to xylem loading by the parasite. However, the xylem sap of Olax did partly reflect the compositions of its hosts; for example, djenkolic acid and pipecolic acid were present when Olax was parasitic on species of Acacia, and levels of citrulline and aspartic acid were higher than normal when it exploited hosts transporting large amounts of these compounds. Back-flow of S-ethenyl cysteine, a novel amino acid specific to Olax, was observed to another root hemiparasite (Exocarpos sparteus) in native habitat and to certain non-parasitic hosts in water-stressed pot cultures. Haustoria exhibited high levels of glutamine synthetase but showed appreciable in vivo nitrate reductase activity only when on hosts with high xylem levels of nitrate.  相似文献   

3.
Summary Structural features of haustorial interface parenchyma of the root hemiparasiteOlax phyllanthi are described. Walls contacting host xylem are thickened non-uniformly with polysaccharides, not lignin, and show only a thin protective wall layer when abutting pits in walls of host xylem vessels or tracheids. Lateral walls of interface parenchyma exhibit an expanded middle layer of open fibrillar appearance, sometimes with, but mostly lacking adjoining layers of dense wall material. Free ribosomes and rough endoplasmic reticulum are prominent and occasional wall ingrowths present. Experiments involving transpirational feeding of the apoplast tracers lanthanum nitrate or uranyl acetate to host roots cut below haustorial connections, indicate effective apoplastic transfer from host to parasite root via the haustorium. Deposits of the tracers suggest a major pathway for water flow through host xylem pits, across the thin protective wall layer, and thence into the haustorium via the electronopaque regions of the terminal and lateral walls of the contact parenchyma. Graniferous tracheary elements and walls of parenchyma cells of the body of the haustorium appear to participate in tracer flow as do walls of cortical cells, stele parenchyma and xylem conducting elements of the parasite root, suggesting that both vascular and non-vascular routes are involved in extracytoplasmic transfer of xylem sap from host to parasite. The Casparian strip of the endodermis and the suberin lamella of the exodermis of theOlax root act as barriers to flow within the system.  相似文献   

4.
5.
Summary Seedlings of Ceratonia siliqua L., an evergreen sclerophyll species native to the Mediterranean region, were grown in 30-cm deep tubes of John Innes II potting compost in a growth cabinet maintained at 15° C during a 12-h day where PAR was 400 mol m–2 s–1. After a period of acclimatisation to the conditions in the cabinet during which plants were watered every day, water was withheld from the soil in some tubes for 24 days. These conditions may be regarded as a simulation of the natural situation. Estimates of leaf and root water potential and solute potential, leaf growth and root development were made at intervals during the soil drying cycle on both watered and unwatered plants. Water potential and solute potential measurements were made both on young expanding and on fully expanded leaves. During the experimental period, root growth of C. siliqua was not much affected by soil drying, and roots in both the watered and the unwatered columns penetrated to the bottom of the soil tubes by the end of the drying treatment. Expanded leaves showed significant limitation in stomatal conductance as soil drying progressed. Leaf water potential of fully expanded leaves of unwatered plants declined substantially. In contrast, water potential of young expanding leaves on unwatered plants declined to only a limited extent and turgor was sustained. As the soil dried, stomatal conductance of young leaves was always higher than that of mature leaves; also, placticity and elasticity of young leaves slowly decreased whereas mature leaves became stiff. Changing leaf cell wall properties may determine different patterns of water use as the leaves age. A mechanism of continuous diffusion of water through the soil towards the tip and pumping towards the young leaves is proposed.  相似文献   

6.
Nutlets of Hemigenia R.Br. and Microcorys R.Br. were examined using SEM. Significant variation, mainly useful at the infrageneric level, was found in nutlet shape, nature of the attachment scar, nature of surface sculpturing, exocarp cell shape and sculpturing, and nature of the indumentum. Typical nutlets are ovoidal, strongly reticulate or rugose. The exocarp cells are isodiametric and convex to papillate. Also common are cylindrical nutlets, often with longitudinal ridging and papillate exocarp cells. Surface pitting and concave exocarp cells are rare. A cladistic analysis of nutlet characters suggests both Hemigenia and Microcorys are polyphyletic, and Microcorys paraphyletic with respect to Westringia Sm. Notwithstanding that, the infrageneric classification of Hemigenia was largely supported, while in Microcorys, there was support for sect. Hemigenioides, but sects Anisandra and Microcorys were not resolved as distinct.  相似文献   

7.
Summary This study examined the water relations and growth responses of Uniola paniculata (sea oats) to (1) three watering regimes and (2) four controlled water-table depths. Uniola paniculata is frequently the dominant foredune grass along much of the southeastern Atlantic and Gulf coasts of the United States, but its distribution is limited in Louisiana. Throughout most of its range, U. paniculata tends to dominate and be well adapted to the most exposed areas of the dune where soil moisture is low. Dune elevations in Louisiana, however, rarely exceed 2 m, and as a result the depth to the water table is generally shallow. We hypothesized that if U. paniculata grows very near the water-table, as it may in Louisiana, it will display signs of water-logging stress. This study demonstrated that excessive soil moisture resulting from inundation or shallow water-table depth has a greater negative effect on plant growth than do low soil moisture conditions. Uniola paniculata's initial response to either drought or inundation was a reduction of leaf (stomatal) conductance and a concomitant decrease in leaf elongation. However, plants could recover from drought-induced leaf xylem pressures of less than-3.3 MPa, but prolonged inundation killed the plants. Waterlogging stress (manifested in significantly reduced leaf stomatal conductances and reduced biomass production) was observed in plants grown at 0.3 m above the water table. This stress was relieved, however, at an elevation of 0.9 m above the water table. As the elevation was increased from 0.9 to 2.7 m, there were no signs of drought stress nor a stimulation in growth due to lower soil moisture. We concluded that although U. paniculata's moisture-conserving traits adapt it well to the dune environment, this species can grow very well at an elevation of only 0.9 m above the water table. Field measurements of water-table depth in three Louisiana populations averaged about 1.3 m. Therefore, the observed limited distribution of U. paniculata along the Louisiana coast apparently cannot be explained by water-logging stress induced by the low dune elevations and the corresponding shallow water-table depth.  相似文献   

8.
Quercus suber L. is the primary source of industrial cork, which can be legally collected every 9 years. The main objective of this work was to test the efficiency of an application of an antitranspirant, at three different concentrations, after the bark stripping. For this purpose, several measurements of the gas exchange, water potential, total chlorophylls and the carotenoids contents were determined in cork oak trees, at two times in a day, morning and afternoon. The antitranspirant film was applied immediately after stripping. Transpiration rate showed a significant increase in the afternoon. The parameters, water potential, photosynthetic rates, stomatal conductance and the intrinsic water use efficiency, showed a significant decrease from morning to afternoon. The difference between pigments concentration was not significant throughout the day. Water potential and transpiration rate were high in the treatments with lower antitranspirant concentration. However, the treatment with a higher paraffin concentration showed larger photosynthesis rate. This result suggests that the loss of water observed for the stripping surface can be minimized by a larger concentration of the antitranspirant.  相似文献   

9.
Summary Seasonal and diurnal gas exchange and water relations of Amyema linophyllum and its host Casuarina obesa were studied at Gingin Western Australia. As recorded elsewhere for other species of mistletoe, stomatal conductances and transpiration rates were consistently higher in parasite than host, but assimilation rates did not differ significantly between partners, and water use efficiency was accordingly substantially lower in the parasite. Parallel responses of the species to environmental conditions suggested closely coordinated stomatal behaviour. However, sunlit and artifically shaded clumps of Amyema maintained high leaf conductances even when foliage fell below turgor loss point, yet their tissue capacitance values indicated maintenance of greater tissue water reserves during stress than in the host. Pressure-volume relationships indicated that differences in tissue water relations were unlikely to contribute significantly to the observed gradient in leaf water potential between partners. An experiment measuring changes in water potential of freshly detached host: parasite systems cut with the host shoot end immersed in water indicated that the haustorial junction was the principal site of resistance to transpiration-driven water flow into the parasite. A parallel experiment on intact attached shoots with mistletoe clumps enclosed and darkened just before dawn, demonstrated that, once the host commenced rapid transpiration, the water potential gradient between partners became reversed.  相似文献   

10.
The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.  相似文献   

11.
We studied the effect of light availability on the growth of an angiospermatic root hemiparasite,Rhinanthus minor. When attached to its host, height growth increased in response to shading, demonstrating thatR. minor was able to detect alterations in light quality and/or quantity. However, this reduced illumination did not affect its biomass, number of haustoria, or the amount of15N transferred from the hosts, compared with its performance under non-shaded conditions. Therefore,R. minor is unlikely to have difficulty in extracting host resources under shading. This result may have been mediated by a loweredR. minor transpiration rate in response to fluctuations in external conditions, including shading and water stress, compared with non-parasitic plants. Therefore, we suggest that, as long as the extent of resources diverted from host to parasite is not significantly altered by shading, growth of the attachedR. minor will be unaffected by reduced light availabilityper se.  相似文献   

12.
Summary The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.  相似文献   

13.
Summary The extent, magnitude, and cause of natural covariation between degree of parasitism and other variables known or suspected of influencing host fitness (such as host age or body size) has been understudied. We demonstrate that degree of parasitism by larval water mites (Arrenurus spp.) was associated with reduced condition of males and with lowered fecundity of young females of the damselfly, Enallagma ebrium (Hagen) (Odonata: Coenagrionidae). We also demonstrate that degree of parasitism can covary with both age and size of host damselflies. We explain the putative causes of such natural covariation, and we suggest that degree of parasitism, host age, and host size can all interact to determine damselfly fitness. We expect that natural covariation between the host's phenotype and degree of parasitism will be frequently observed. Studies of such natural covariation will help researchers to assess better the importance of several variables on host reproductive success and to understand better the dynamics of host-parasite interactions.  相似文献   

14.
Li AR  Smith SE  Smith FA  Guan KY 《Annals of botany》2012,109(6):1075-1080

Background and Aims

Plant parasitism and arbuscular mycorrhizal (AM) associations have many parallels and share a number of regulatory pathways. Despite a rapid increase in investigations addressing the roles of AM fungi in regulating interactions between parasitic plants and their hosts, few studies have tested the effect of AM fungi on the initiation and differentiation of haustoria, the parasite-specific structures exclusively responsible for host attachment and nutrient transfer. In this study, we tested the influence of AM fungi on haustorium formation in a root hemiparasitic plant.

Methods

Using a facultative root hemiparasitic species (Pedicularis tricolor) with the potential to form AM associations, the effects of inoculation were tested with two AM fungal species, Glomus mosseae and Glomus intraradices, on haustorium initiation in P. tricolor grown alone or with Hordeum vulgare ‘Fleet’ (barley) as the host plant. This study consisted of two greenhouse pot experiments.

Key Results

Both AM fungal species dramatically suppressed intraspecific haustorium initiation in P. tricolor at a very low colonization level. The suppression over-rode inductive effects of the parasite''s host plant on haustoria production and caused significant growth depression of P. tricolor.

Conclusions

AM fungi had strong and direct suppressive effects on haustorium formation in the root hemiparasite. The significant role of AM fungi in haustorium initiation of parasitic plants was demonstrated for the first time. This study provides new clues for the regulation of haustorium formation and a route to development of new biocontrol strategies in management of parasitic weeds.  相似文献   

15.
Summary Seedlings of Eucalyptus globulus growing in soil columns were subjected to a 24 day soil drying treatment. Water and solute potentials of both young expanding and fully expanded leaves declined under reduced soil water availability, while slightly higher turgor was sustained by the fully expanded leaves. Although leaf area of unwatered seedlings was smaller, the corresponding leaf dry weight was quite similar to that of well-watered seedlings. Soon after rewatering, leaf area of plants experiencing water shortage was comparable to that of well-watered plants. It seems that a difference in wall properties between juvenile and mature leaves allows for an effective pattern of water use by eucalypt plants growing in drying soil. Some stomatal opening is sustained and therefore, presumably, some carbon may be fixed, keeping the carbon balance of the whole plant positive, and allowing a continuous cell division despite the limited water supply. The highest root density of both well-watered and unwatered plants was found in the upper soil layers. However, root growth of unwatered seedlings was gradually increased in the deeper soil layers, where thicker root apices and higher soil water depletion rates per unit root length were recorded. As a consequence, root absorbing surface area was as large in unwatered plants as in well-watered plants.  相似文献   

16.
Summary Rhinanthus minor (Yellow-rattle) was grown in replacement series mixtures with Lolium perenne and Trifolium repens. The hemiparasitic interaction resulted in Relative Yield Totals (the sum of the yields in mixture relative to those in monoculture) considerably above 2. The hemiparasite caused a greater decrease in the yield of the legume and also performed better on the legume, indicating that T. repens was a better host for R. minor than L. perenne under the experimental conditions. When L. perenne and T. repens were grown in binary mixture with or without R. minor the hemiparasite affected considerably the competitive relationship between the two species by selectively parasitizing the legume. The effect of R. minor on competition between the two species was, however, dependent upon the nutrient status of the soil: the higher the level of soil nitrogen the fewer haustorial connections were made with T. repens and the less was the depression in its yield. In another series of experiments in which Festuca rubra, Holcus lanatus and L. perenne were grown in various binary mixtures with or without R. minor it was also shown that the yield of a preferred host was depressed to the advantage of a non-preferred host. It is suggested that the mediation of competition by the hemiparasite provides a mechanism by which it might affect the structure and diversity of plant communities.  相似文献   

17.
Introduced African grasses are invading Neotropical savannas and displacing the native herbaceous community. This work, which is part of a program to understand the success of the African grasses, specifically investigates whether introduced and native grasses differ in their water relations. The water relations of the native Trachypogon plumosus and the successful invader Hyparrhenia rufa were studied in the field during two consecutive years in the seasonal savannas of Venezuela. The two C4 grasses differed clearly in their responses to water stress. H. rufa consistently had higher stomatal conductance, transpiration rate, leaf water and osmotic potential and osmotic adjustment than the native T. plumosus. Also, leaf senescence occurred much earlier during the dry season in H. rufa. Both grasses showed a combination of water stress evasion and tolerance mechanisms such as stomatal sensitivity to atmospheric or soil water stress, decreased transpiring area and osmotic adjustment. Evasion mechanisms are more conspicuous in H. rufa whereas T. plumosus is more drought tolerant and uses water more conservatively. The evasion mechanisms and oportunistic use of water by H. rufa, characteristic of invading species, contribute to, but only partially explain, the success of this grass in the Neotropical savannas where it displaces native plants from sites with better water and nutrient status. Conversely, the higher water stress tolerance of t. plumosus is consistent with its capacity to resist invasion by alien grasses on shallow soils and sites with poorer nutrient and water status.  相似文献   

18.
Clarkson  D. T.  Sanderson  J.  Scattergood  C. B. 《Planta》1978,139(1):47-53
Plants of Hordeum vulgare (barley) were grown initially in a solution containing 150 M phosphate and then transferred on day 6 to solutions with (+P) and without (-P) phosphate supplied. After various times plants from these treatments were supplied with labelled phosphate. Analysis of plant growth and rates of labelled phosphate uptake showed that a general enhancement of uptake and translocation was found, in plants which had been in the-P solution, several days before the rate of dry matter accumulation was affected. Subsequently a detailed analysis of phosphate uptake by segments of intact root axes showed that the enhancement of phosphate uptake by P-stress occurred first in the old and mature parts of the seminal root axis and last in the young zones 1 cm from the root apex. During this transition period there were profound changes in the pattern of P absorption along the length of the root. Most of the additional P absorbed in response to P-stress was translocated to the shoot, particularly in older zones of the axis. Enhancement of phosphate uptake in young zones of nodal axes occurred at an earlier stage than in seminal axes. The results are related to the P-status of shoots and root zones and discussed in relation to the general control by the shoot of phosphate transport in the root.  相似文献   

19.
A pressure-clamp technique was devised for the direct measurement of cell-to-cell and apoplasmic components of root hydraulic conductance; the experimental results were analyzed in terms of a theoretical model of water and solute flow, based on a composite membrane model of the root. When water is forced under a constant pressure into a cut root system, an exponential decay of flow is observed, until a constant value is attained; when pressure is released, a reverse water flow out of the root system is observed which shows a similar exponential behavour. The model assumes that the transient flow occurs through a cell-to-cell pathway and the observed decrease is the result of accumulation of solutes in front of the root semi-permeable membrane, whilst the steady-state component results from the movement of water through the parallel apoplasmic pathway. Root conductance components are estimated by fitting the model to experimental data. The technique was applied to the root systems of potted cherry (Prunus avium L.) seedlings; average apoplasmic conductance was 15.5 × 10–9m3· s–1· MPa–1, with values ranging from 12.0 × 10–9 to 18.5 × 10–9m3· s–1· MPa–1; average cell-to-cell conductance was 11.7 × 109 m3· s–1· MPa–1, with values ranging from 8.5 × 10–9 to 15.3 × 10–9 m3 · s–1·MPa–1. Cell-to-cell conductance amounted on average to 43% of total root conductance, with values between 41 and 45%. Leaf specific conductance (conductance per unit of leaf area supported) of the root systems ranged from 2.7 × 10–8 to 5.6 × 10–8 m· s–1·MPa–1, with an average of 3.7 × 10–8 m · s–1·MPa–1. The newly developed technique allows the interaction of mass flow of water and of solutes to be explored in the roots of soil-grown plants.Abbreviations and Symbols A Lp root hydraulic conductance - AaL p a root apoplasmic conductance - AccL p cc root cell-to-cell conductance - Cs(t) concentration of solutes in apical root compartment at time t - Jv flow of water through the root - J v a apoplasmic flow of water - Jv/cc cell-to-cell flow of water - LSC leaf specific conductance of the root system - P root hydrostatic pressure - Pappl applied pressure - s(t) root osmotic pressure at time t - m osmotic pressure of rooting medium - reflection coefficient of root membrane - time constant of cell-to-cell flow decay This research was funded within the EC Project Long-term effects of CO2-increase and climate change on European forests (LTEEF) (EV5V-CT94-0468); F.M. was supported by a Ministero dell' Universitá e della Ricerca Scientifica e Tecnologica — British Council agreement (Project The ecological significance of cavitation in woody plants); M.C. was supported by a Consiglio Nazionale delle Ricerche — British Council agreement. We gratefully thank Prof. P.G. Jarvis (University of Edinburgh, UK) for revising an earlier version of this paper and Prof. E. Steudle (University of Bayreuth, Germany) for helpful comments.  相似文献   

20.
The percentage of water in the total living body weight is restricted within a narrow range for each species, even in snails cultured under differing controlled ionic concentrations in the medium. The water level in Helisoma trivolvis is consistently higher than in Biomphalaria pfeifferi and B. glabrata under the same culture conditions.The whole cationic fraction of the total osmoconcentration of the haemolymph is maintained at a constant hypertonic level, even though individual cation levels vary with the cationic composition of the surrounding medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号