首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.  相似文献   

2.
3.
Eight strains of Rhizobium lacking hydrogenase uptake (Hup) activity and 17 transconjugant strains carrying the hup cosmids pHU1, pHU52, or pHU53 (G. R. Lambert, M. A. Cantrell, F. J. Hanus, S. A. Russell, K. R. Haddad, and H. J. Evans, Proc. Natl. Acad. Sci. USA, 82:3232-3236, 1985) were screened for Hup activity and the presence of immunologically detectable hydrogenase polypeptides. Crude extracts of these strains were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis with affinity-purified antibodies against the two subunits of purified hydrogenase (Mr 60,000 and 30,000). Derepressed transconjugants carrying the cosmid pHU52 were Hup+ and contained detectable levels of both hydrogenase subunit polypeptides. Non-derepressed strains, Hup- parent strains, and strains carrying cosmids other than pHU52 did not express Hup activity and contained no immunologically detectable protein. These data provide further evidence for the essential involvement of the smaller (Mr 30,000) subunit in the expression of hydrogenase activity in Rhizobium japonicum and suggest that the determinants for hydrogenase subunit synthesis are present on pHU52.  相似文献   

4.
We have constructed a cosmid derivative of the low copy-number broad host-range cloning vector pRK290 (Ditta et al., 1980) by inserting a 1.6-kb Bg/II fragment containing lambda cos into the unique Bg/II site in pRK290. The new vector, pLAFR1, is 21.6 kb long, confers tetracycline resistance, contains a unique EcoRI site, and can be mobilized into and stably replicates within many Gram-negative hosts. We constructed a clone bank of Rhizobium meliloti DNA in pLAFR1 using a partial EcoRI digest. The mean insert size was 23.1 kb. When the clone bank was mated (en masse) from Escherichia coli to various R. meliloti auxotrophic mutants, tetracycline-resistant (Tcr) transconjugants were obtained at frequencies ranging from 0.1 to 0.8, and among these, prototrophic colonies were obtained at frequencies ranging from 0.001 to 0.007. pLAFR1 cosmids were mobilized from R. meliloti prototrophic colonies into E. coli and then reintroduced into R. meliloti auxotrophs. In most cases, 100% of these latter Tcr transconjugants were prototrophic.  相似文献   

5.
A gene bank of the 450-kilobase (kb) megaplasmid pHG1 from the hydrogen-oxidizing bacterium Alcaligenes eutrophus H16 was constructed in the broad-host-range mobilizable vector pSUP202 and maintained in Escherichia coli. hox DNA was identified by screening the E. coli gene bank for restoration of hydrogenase activity in A. eutrophus Hox mutants. Hybrid plasmids that contained an 11.6-kb EcoRI fragment restored soluble NAD-dependent hydrogenase activity when transferred by conjugation into one class of Hos- mutants. An insertion mutant impaired in particulate hydrogenase was partially restored in Hop activity by an 11-kb EcoRI fragment. A contiguous sequence of two EcoRI fragments of 8.6 and 2.0 kb generated Hox+ recombinants from mutants that were devoid of both hydrogenase proteins. hox DNA was subcloned into the vector pVK101. The resulting recombinant plasmids were used in complementation studies. The results indicate that we have cloned parts of the structural genes coding for Hos and Hop activity and a complete regulatory hox DNA sequence which encodes the thermosensitive, energy-dependent derepression signal of hydrogenase synthesis in A. eutrophus H16.  相似文献   

6.
A gene bank of the DNA from the hydrogen bacterium Alcaligenes eutrophus ATCC 17707 was constructed in the broad host range cosmid vector pVK102 and established in Escherichia coli. A triparental replica plating procedure was developed to allow rapid screening of large numbers of isolated E. coli gene bank clones for complementation of A. eutrophus mutants. This procedure was used to identify hybrid cosmids that complemented CO2 fixation-negative (Cfx-), H2 uptake-negative (Hup-), and auxotrophic A. eutrophus mutants. The average insert DNA size in these hybrid cosmids was 22 kilobases. Nine hybrid cosmids that complemented ribulose bisphosphate carboxylase-negative (RuBPCase-) mutants were characterized. They fell into two distinct groups with respect to their restriction patterns. Complementing subclones from the two groups contained no common restriction fragments, but hybridization experiments indicated a high degree of sequence homology. Restriction fragments corresponding to one of the subclones were absent in total DNA from a cured strain that had lost plasmid pAE7, indigenous to the wild type. It is concluded that functional CO2 fixation genes in the A. eutrophus ATCC 17707 chromosome are reiterated on plasmid pAE7.  相似文献   

7.
8.
A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids.  相似文献   

9.
Summary The structural genes (hup) of the H2 uptake hydrogenase of Rhodobacter capsulatus were isolated from a cosmid gene library of R. capsulatus DNA by hybridization with the structural genes of the H2 uptake hydrogenase of Bradyrhizobium japonicum. The R. capsulatus genes were localized on a 3.5 kb HindIII fragment. The fragment, cloned onto plasmid pAC76, restored hydrogenase activity and autotrophic growth of the R. capsulatus mutant JP91, deficient in hydrogenase activity (Hup-). The nucleotide sequence, determined by the dideoxy chain termination method, revealed the presence of two open reading frames. The gene encoding the large subunit of hydrogenase (hupL) was identified from the size of its protein product (68108 dalton) and by alignment with the NH2 amino acid protein sequence determined by Edman degradation. Upstream and separated from the large subunit by only three nucleotides was a gene encoding a 34 256 dalton polypeptide. Its amino acid sequence showed 80% identity with the small subunit of the hydrogenase of B. japonicum. The gene was identified as the structural gene of the small subunit of R. capsulatus hydrogenase (hupS). The R. capsulatus hydrogenase also showed homology, but to a lesser extent, with the hydrogenase of Desulfovibrio baculatus and D. gigas. In the R. capsulatus hydrogenase the Cys residues, (13 in the small subunit and 12 in the large subunit) were not arranged in the typical configuration found in [4Fe–4S] ferredoxins.  相似文献   

10.
Mutants of Anabaena sp. strain PCC 7120 unable to grow aerobically on dinitrogen were isolated by mutagenesis with UV irradiation, followed by a period of incubation in yellow light and then by penicillin enrichment. A cosmid vector, pRL25C, containing replicons functional in Escherichia coli and in Anabaena species was constructed. DNA from wild-type Anabaena sp. strain PCC 7120 was partially digested with Sau3AI, and size-fractionated fragments about 40 kilobases (kb) in length were ligated into the phosphatase-treated unique BamHI site of pRL25C. A library of 1,054 cosmid clones was generated in E. coli DH1 bearing helper plasmid pDS4101. A derivative of conjugative plasmid RP-4 was transferred to this library by conjugation, and the library was replicated to lawns of mutant Anabaena strains with defects in the polysaccharide layer of the envelopes of the heterocysts. Mutant EF116 was complemented by five cosmids, three of which were subjected to detailed restriction mapping; a 2.8-kb fragment of DNA derived from one of the cosmids was found to complement EF116. Mutant EF113 was complemented by a single cosmid, which was also restriction mapped, and was shown to be complemented by a 4.8-kb fragment of DNA derived from this cosmid.  相似文献   

11.
A gene bank of DNA from plant growth-promoting Pseudomonas sp. strain B10 was constructed using the broad host-range conjugative cosmid pLAFR1. The recombinant cosmids contained insert DNA averaging 21.5 kilobase pairs in length. Nonfluorescent mutants of Pseudomonas sp. strain B10 were obtained by mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine, ethyl methanesulfonate, or UV light and were defective in the biosynthesis of its yellow-green, fluorescent siderophore (microbial iron transport agent) pseudobactin. No yellow-green, fluorescent mutants defective in the production of pseudobactin were identified. Nonfluorescent mutants were individually complemented by mating the gene bank en masse and identifying fluorescent transconjugants. Eight recombinant cosmids were sufficient to complement 154 nonfluorescent mutants. The pattern of complementation suggests that a minimum of 12 genes arranged in four gene clusters is required for the biosynthesis of pseudobactin. This minimum number of genes seems reasonable considering the structural complexity of pseudobactin.  相似文献   

12.
An initial mapping analysis of growth and reproduction complex (grc) and grc+ genomic DNA identified several restriction fragment length polymorphisms specific for the grc region of the MHC. To analyze further the genomic organization and structure of the grc, a cosmid library was constructed from a grc+-bearing strain (R21). One cosmid cluster, encompassing 41.4 kb of DNA, contained four, or possibly five, class I genes that mapped to the RT1.E-grc region Two unique non-class I fragments were isolated from certain cosmids within this cluster. These fragments were hybridized to genomic DNA derived from five rat strains (BIL/2, R18, R21, R22, and BIL/1), and the results showed that grc-bearing rats have a deletion of at least 3.1 kb of DNA in the region immediately adjacent to the MHC. The loss of the genes in this region is probably the cause of the growth and reproductive defects in these animals and probably also of their increased susceptibility to chemical carcinogens.  相似文献   

13.
Genomic DNA from an efficient Hup+ Sesbania-Azorhizobium strain IRBG-46 was isolated, partially digested with EcoRI and fractionated on a 10–40% sucrose density gradient to obtain DNA fragments in the size range of 15–23 kb. In order to isolate hup genes from this strain, a gene bank was constructed in Escherichia coil HB101 using a mobilizable plasmid vector pRK290 having a EcoRI cloning site. Approximately 2x104 Tc-resistant transformants were pooled to constitute the gene bank. Using 12.9 kb EcoRI fragment of cosmid pHU52 as a heterologous hup probe, a total of 2,000 clones were screened by colony hybridization. Five positive clones confirmed by secondary screening and ex planta uptake hydrogenase activity were identified. An insert size in the range of 15–22 kb was revealed by restriction analysis with EcoRI. These five recombinant plasmids containing Hup-determlnants of Azorhizobium IRBG-46 have been designated as pSRH1, pSRH2, pSRH3, pSRH4 and pSRH5. These plasm ids were transferred into Hup- Cicer-Rhizobium strain Rcd 301 to check the expression of hup genes in the new genetic background. In the transconjugants so obtained, the hup genes were found to express under ex planta conditions, and uptake hydrogenase activity ranged from 134 to 392 nmol H2 taken up per h per mg protein.  相似文献   

14.
DNA fragments from Proteus vulgaris and Chromatium vinosum were isolated which restored hydrogenase activities in both hydA and hydB mutant strains of Escherichia coli. The hydA and hydB genes, which map near minute 59 of the genome map, 17 kb distant from each other, are not structural hydrogenase genes, but mutation in either of these genes leads to failure to synthesize any of the hydrogenase isoenzymes. The smallest DNA fragments which restored hydrogenase activity to both E. coli mutant strains were 4.7 kb from C. vinosum and 2.3 kb from P. vulgaris. These fragments were cleaved into smaller fragments which did not complement either of the E. coli mutations. The cloned heterologous genes also restored formate hydrogenlyase activity but they did not restore activity in hydE, hupA or hupB mutant strains of E. coli. The cloned genes, on plasmids, did not lead to the synthesis of proteins of sufficient size to be the hydrogenase catalytic subunit. The hydrogenase proteins synthesized by hydA and hydB mutant strains of E. coli transformed by cloned genes from P. vulgaris and C. vinosum were shown by isoelectric and immunological methods to be E. coli hydrogenase. Thus, these genes are not hydrogenase structural genes.  相似文献   

15.
An Exo- mutant of Rhizobium leguminosarum biovar trifolii was isolated which did not produce acidic exopolysaccharide and induced defective, non-fixing nodules on clover plants. The nodules were defective at a late stage of development, they contained infection threads and bacteria were released into the host cells. Cosmid pARF136 capable of complementing the Exo- mutation was isolated from a cosmid bank made from total R. trifolii DNA. Hybridization between DNA of pARF136 and plasmids of R. trifolii strains separated by Eckhardt's technique suggested that the exo locus is located on a 300 kb megaplasmid, and nodDABC and nifKDH genes are located on another 180 kb pSym plasmid. A 5.4 kb BamH1 fragment of the recombinant cosmid pARF136 was able to restore exopolysaccharide synthesis in Exo- mutant of R. trifolii 93 but it did not complement the symbiotic defect.  相似文献   

16.
From genomic libraries of the purple non-sulfur bacteria Rhodospirillum rubrum Ha and Rhodobacter sphaeroides ATCC 17023 in the broad-host range cosmid pVK100, we cloned a 15- and a 14-kbp HindIII restriction fragment, respectively. Each of these fragments restored the ability to accumulate poly(3-hydroxybutyrate) (PHB), in the PHB-negative mutant Alcaligenes eutrophus PHB-4. These hybrid cosmids also complemented PHB-negative mutants derived from wild-type R. rubrum or R. sphaeroides. Both fragments hybridized with the PHB synthase structural gene of A. eutrophus H16 and conferred the ability to express PHB synthase activity. Only the 15-kbp HindIII fragment from R. rubrum conferred on the mutant PHB-4 the ability to form large PHB granules (length up to 3.5 microns).  相似文献   

17.
A detailed restriction map of the genome of Rhodobacter capsulatus SB1003 was constructed recently by using an ordered set of overlapping cosmids. Pulsed-field gel electrophoresis-generated restriction patterns of the chromosomes of 14 other R. capsulatus strains were compared. Two of them, St. Louis and 2.3.1, were chosen for high-resolution alignment of their genomes with that of SB1003. A 1-Mb segment of the R. capsulatus SB1003 cosmid set was used as a source of ordered probes to group cosmids from the other strains. Selected cosmids were linked into one 800-kb contig and two smaller contigs of 100 kb each. EcoRV and BamHI restriction maps of the newly ordered cosmids were constructed by using lambda terminase. Long-range gene order in the new strains was mainly conserved for the regions studied. However, one large genome rearrangement inverted a 470-kb DNA fragment of the St. Louis strain between the rrnA and rrnB operons. A 50-kb deletion covering three SB1003 probes was found in strain 2.3.1 near rrnB. Conservation of about 50% of the positions of restriction sites in all these strains and nearly 80% for the pair 2.3.1- St. Louis made it possible to produce high-resolution alignment of the contiguous 800-kb genome segment. Ten deletions of 2 to 27 kb, one 30-kb inversion, and three translocations were found in this region. Strong clustering of the positions of polymorphic restriction sites was observed. For a 50-kb size interval, two patterns of the distribution of restriction sites were found, one with about 90% and the other with 5 to 30% conservation of sites. This structure may be explained by independent acquisition of these divergent regions from other Rhodobacter strains.  相似文献   

18.
A physical map of the chromosome of Streptomyces lividans 66 ZX7 was constructed by ordering the macrorestriction fragments generated from the genomic DNA with the restriction enzymes AseI and DraI. AseI and DraI linking cosmids (i.e., recombinant cosmids including either AseI or DraI sites) were isolated from a gene bank and used as hybridization probes against Southern transfers of pulsed-field gel electrophoresis (PFGE) restriction patterns. The DraI sites were precisely mapped by PFGE analyses of AseI-DraI double digests and hybridization with the AseI junctions. The 16 AseI and 7 DraI fragments were aligned as a single chromosome of about 8,000 kb. The data supported the interpretation that the chromosome is a linear structure. The related strain Streptomyces coelicolor A3(2) M145, recently mapped by H. Kieser, T. Kieser, and D. A. Hopwood (J. Bacteriol. 174:5496-5507, 1992), was compared with S. lividans at the level of the genomic structure by hybridizing the linking cosmids to Southern transfers of PFGE patterns. In spite of little apparent similarity in their restriction patterns, the comparison of the physical maps revealed a common structure with an identical ordering of the cosmid sequences. This conservation of the map order was further confirmed by assigning genetic markers (i.e., cloned genes and DNA elements relevant to the unstable region) to the AseI fragments.  相似文献   

19.
The plant-growth-stimulating Pseudomonas putida WCS358 was mutagenized with transposon Tn5. The resulting mutant colony bank was screened for mutants defective in the biosynthesis of the fluorescent siderophore. A total of 28 mutants, divided into six different classes, were isolated that were nonfluorescent or defective in iron acquisition or both. These different types of mutants together with the probable overall structure of the siderophore, i.e., a small peptide chain attached to a fluorescing group, suggest a biosynthetic pathway in which the synthesis of the fluorescing group is preceded by the synthesis of the peptide part. A gene colony bank of P. putida WCS358 was constructed with the broad-host-range cosmid vector pLAFR1. This genomic library, established in Escherichia coli, was mobilized into the 28 individual mutants, screening for transconjugants restored in fluorescence or growth under iron-limiting conditions or both. A total of 13 cosmids were found to complement 13 distinct mutants. The complementation analysis revealed that at least five gene clusters, with a minimum of seven genes, are needed for siderophore biosynthesis. Some of these genes seem to be arranged in an operon-like structure.  相似文献   

20.
A gene bank from Pseudomonas fluorescens ST was constructed in the broad-host-range cosmid pLAFR3 and mobilized into Pseudomonas putida PaW340. Identification of recombinant cosmids containing the styrene catabolism genes was performed by screening transconjugants for growth on styrene and epoxystyrene. Transposon mutagenesis and subcloning of one of the selected genome fragments have led to the identification of three enzymatic activities: a monooxygenase activity encoded by a 3-kb PstI-EcoRI fragment and an epoxystyrene isomerase activity and an epoxystyrene reductase activity encoded by a 2.3-kb BamHI fragment. Escherichia coli clones containing the 3-kb PstI-EcoRI fragment were able to transform styrene into epoxystyrene, and those containing the 2.3-kb BamHI fragment converted epoxystyrene into phenylacetaldehyde or, only in the presence of glucose, into 2-phenylethanol. The three genes appear to be clustered and are probably encoded by the same DNA strand. In E. coli, expression of the epoxystyrene reductase gene was under the control of its own promoter, whereas the expression of the other two genes was dependent on the presence of an external vector promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号