首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis   总被引:9,自引:0,他引:9       下载免费PDF全文
We assessed viable Pax7(-/-) mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3(+)/MyoD+ myoblasts were recovered from Pax7(-/-) muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.  相似文献   

3.
We have extended Metabolic Control Theory to include cascades consisting of several modules controlling each other solely via regulatory effects. We derive several theorems that determine how the control properties of a cascade derive from (1) the control properties of each module, taken in isolation and (2) the regulatory interactions between the modules. Two cases are treated explicitly. The first concerns cascades in the absence of feed-back: in this case the internal control behaviour of each module is unaffected by external regulatory interactions. The second includes one feed-back loop and gives a quantitative expression of how feed-back modifies control properties: the internal control matrix within one module can be calculated as if the elasticity matrix of this module was the sum of its intrinsic elasticity matrix and a cyclic regulation matrix. More complex cascades can be analysed recursively by subdividing them into simpler modules, which can be treated individually. The theoretical framework developed here should facilitate quantitative experimental analysis of the control of cell physiology where the latter involves regulatory cascades.  相似文献   

4.
5.
6.
7.
The human kallikrein (KLK)-related peptidases are the largest family of serine peptidases, comprising 15 members (KLK1-15) and with the majority (KLK4-15) being identified only within the last decade. Members of this family are associated with important diseased states (including cancer, inflammation, and neurodegeneration) and have been utilized or proposed as clinically important biomarkers or therapeutic targets of interest. All human KLKs are synthesized as prepro-forms that are proteolytically processed to secreted pro-forms via the removal of an amino-terminal secretion signal peptide. The secreted inactive pro-KLKs are then activated extracellularly to mature peptidases by specific proteolytic release of their amino-terminal propeptide. Although a key step in the regulation of KLK function, details regarding the activation of the human pro-KLKs (i.e. the KLK "activome") are unknown, to a significant extent, but have been postulated to involve "activation cascades" with other KLKs and endopeptidases. To characterize more completely the KLK activome, we have expressed from Escherichia coli individual KLK propeptides fused to the amino terminus of a soluble carrier protein. The ability of 12 different mature KLKs to process the 15 different pro-KLK peptide sequences has been determined. Various autolytic and cross-activation relationships identified using this system have subsequently been characterized using recombinant pro-KLK proteins. The results demonstrate the potential for extensive KLK activation cascades and, when combined with available data for the tissue-specific expression of the KLK family, permit the construction of specific regulatory cascades. One such tissue-specific cascade is proposed for the central nervous system.  相似文献   

8.
9.
Muscle-specific isoform of the mitochondrial ATP synthase gamma subunit (F(1)gamma) was generated by alternative splicing, and exon 9 of the gene was found to be lacking particularly in skeletal muscle and heart tissue. Recently, we reported that alternative splicing of exon 9 was induced by low serum or acidic media in mouse myoblasts, and that this splicing required de novo protein synthesis of a negative regulatory factor (Ichida, M., Endo, H., Ikeda, U., Matsuda, C., Ueno, E., Shimada, K., and Kagawa, Y. (1998) J. Biol. Chem. 273, 8492-8501; Hayakawa, M., Endo, H., Hamamoto, T., and Kagawa, Y. (1998) Biochem. Biophys. Res. Commun. 251, 603-608). In the present report, we identified a cis-acting element on the muscle-specific alternatively spliced exon of F(1)gamma gene by an in vivo splicing system using cultured cells and transgenic mice. We constructed a F(1)gamma wild-type minigene, containing the full-length gene from exon 8 to exon 10, and two mutants; one mutant involved a pyrimidine-rich substitution on exon 9, whereas the other was a purine-rich substitution, abbreviated as F(1)gamma Pu-del and F(1)gamma Pu-rich mutants, respectively. Based on an in vivo splicing assay using low serum- or acid-stimulated splicing induction system in mouse myoblasts, Pu-del mutation inhibited exon inclusion, indicating that a Pu-del mutation would disrupt an exonic splicing enhancer. On the other hand, the Pu-rich mutation blocked muscle-specific exon exclusion following both inductions. Next, we produced transgenic mice bearing both mutant minigenes and analyzed their splicing patterns in tissues. Based on an analysis of F(1)gamma Pu-del minigene transgenic mice, the purine nucleotide of this element was shown to be necessary for exon inclusion in non-muscle tissue. In contrast, analysis of F(1)gamma Pu-rich minigene mice revealed that the F(1)gamma Pu-rich mutant exon had been excluded from heart and skeletal muscle of these transgenic mice, despite the fact mutation of the exon inhibited muscle-specific exon exclusion in myotubes of early embryonic stage. These results suggested that the splicing regulatory mechanism underlying F(1)gamma pre-mRNA differed between myotubes and myofibers during myogenesis and cardiogenesis.  相似文献   

10.
Rat skeletal myoblasts contain two cytosolic cAMP-dependent protein kinases, types I and II. Photoaffinity labeling with 8-azido-cAMP reveals the presence of regulatory subunits of Mr = 52,000, 47,000, and 36,000. The Mr = 52,000 and 47,000 subunits are very likely RII and RI, respectively, while the Mr = 36,000 subunit appears to be a proteolytic product of RI, as judged by its cross-reactivity to anti-RI antiserum. The total protein kinase activity increases about 3-fold during the fusion of myoblasts. In parallel with this increase, the concentration of RI subunit also increases, while the levels of RII remain unchanged. Myoblast mutants which lack the capability to differentiate both biochemically and morphologically also lack the ability to increase the concentration of RI subunit. This ability is restored in complementing somatic hybrids which regain the capability to differentiate.  相似文献   

11.
12.
The calcium-activated cysteine protease m-calpain plays a pivotal role during the earlier stages of myogenesis, particularly during fusion. The enzyme is a heterodimer, encoded by the genes capn2, for the large subunit, and capn4, for the small subunit. To study the regulation of m-calpain, the DNA sequence upstream of capn2 was analyzed for promoter elements, revealing the existence of five consensus-binding sites (E-box) for several myogenic regulatory factors and one binding site for myocyte enhancer factor-2 (MEF-2). Transient transfections with reporter gene constructs containing the E-box revealed that MyoD presents a high level of transactivation of reporter constructs containing this region, in particular the sequences including the MEF-2/E4-box. In addition, over-expression of various myogenic factors demonstrated that MyoD and myogenin with much less efficiency, can up-regulate capn2, both singly and synergistically, while Myf5 has no effect on synthesis of the protease. Experiments with antisense oligonucleotides directed against each myogenic factor revealed that MyoD plays a specific and pivotal role during capn2 regulation, and cannot be replaced wholly by myogenin and Myf5.  相似文献   

13.
Multiple kinase activities are required for skeletal muscle differentiation. However, the mechanisms by which these kinase pathways converge to coordinate the myogenic process are unknown. Using multiple phosphoprotein and phosphopeptide enrichment techniques we obtained phosphopeptides from growing and differentiating C2C12 muscle cells and determined specific peptide sequences using LC-MS/MS. To place these phosphopeptides into a rational context, a bioinformatics approach was used. Phosphorylation sites were matched to known site-specific and to site non-specific kinase-substrate interactions, and then other substrates and upstream regulators of the implicated kinases were incorporated into a model network of protein-protein interactions. The model network implicated several kinases of known relevance to myogenesis including AKT, GSK3, CDK5, p38, DYRK, and MAPKAPK2 kinases. This combination of proteomics and bioinformatics technologies should offer great utility as the volume of protein-protein and kinase-substrate information continues to increase.  相似文献   

14.
15.
In tetrapod phylogeny, the dramatic modifications of the trunk have received less attention than the more obvious evolution of limbs. In somites, several waves of muscle precursors are induced by signals from nearby tissues. In both amniotes and fish, the earliest myogenesis requires secreted signals from the ventral midline carried by Hedgehog (Hh) proteins. To determine if this similarity represents evolutionary homology, we have examined myogenesis in Xenopus laevis, the major species from which insight into vertebrate mesoderm patterning has been derived. Xenopus embryos form two distinct kinds of muscle cells analogous to the superficial slow and medial fast muscle fibres of zebrafish. As in zebrafish, Hh signalling is required for XMyf5 expression and generation of a first wave of early superficial slow muscle fibres in tail somites. Thus, Hh-dependent adaxial myogenesis is the likely ancestral condition of teleosts, amphibia and amniotes. Our evidence suggests that midline-derived cells migrate to the lateral somite surface and generate superficial slow muscle. This cell re-orientation contributes to the apparent rotation of Xenopus somites. Xenopus myogenesis in the trunk differs from that in the tail. In the trunk, the first wave of superficial slow fibres is missing, suggesting that significant adaptation of the ancestral myogenic programme occurred during tetrapod trunk evolution. Although notochord is required for early medial XMyf5 expression, Hh signalling fails to drive these cells to slow myogenesis. Later, both trunk and tail somites develop a second wave of Hh-independent slow fibres. These fibres probably derive from an outer cell layer expressing the myogenic determination genes XMyf5, XMyoD and Pax3 in a pattern reminiscent of amniote dermomyotome. Thus, Xenopus somites have characteristics in common with both fish and amniotes that shed light on the evolution of somite differentiation. We propose a model for the evolutionary adaptation of myogenesis in the transition from fish to tetrapod trunk.  相似文献   

16.
A hypothesis concerning two distinct classes of amino acid residues in some regulatory binding sites is proposed. The affinity residues are those that are unable to transduce the ligand information signal but are responsible for overcoming the barrier for the attachment of a ligand to its binding site while the effector residues transfer the binding signal to the other functional part of the protein, which then undergoes a non-equilibrium energetic cycle induced by interaction with the ligand.As an example, the purine nucleotide inhibition of H+ transport through the uncoupling protein of brown adipose tissue mitochondria is discussed; there is a concentration range in which the nucleotide is bound but does not inhibit H+ transport. This is interpreted in terms of inaccessibility of the effector residues inducing H+ transport inhibition below a certain threshold concentration.  相似文献   

17.
18.
19.
Translational motion of the head and trunk during normal walking   总被引:1,自引:0,他引:1  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号