首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular genetic analysis of isolated single cells and other minute DNA samples is limited because there is insufficient DNA to perform more than one independent PCR amplification. One solution to this problem is to first amplify the entire genome, thus providing enough DNA for numerous subsequent PCRs. In this study we have investigated four different methods of whole genome amplification performed on single cells, and have identified a protocol that generates sufficient quantities of DNA for comparative genomic hybridisation (CGH) as well as more than 90 independent amplification reactions. Thus, numerous specific loci and the copy number of every chromosome can be assessed in a single cell. We report here the first reliable application of CGH to single cells from human preimplantation embryos (blastomeres) and to single fibroblasts, buccal cells and amniocytes.  相似文献   

2.
Isolation of DNA from blood and buccal swabs in adequate quantities is an integral part of forensic research and analysis. The present study was performed to determine the quality and the quantity of DNA extracted from four commonly available samples and to estimate the time duration of the ensuing PCR amplification. Here, we demonstrate that hair and urine samples can also become an alternate source for reliably obtaining a small quantity of PCR-ready DNA. We developed a rapid, cost-effective, and noninvasive method of sample collection and simple DNA extraction from buccal swabs, urine, and hair using the phenol-chloroform method. Buccal samples were subjected to DNA extraction, immediately or after refrigeration (4–6°C) for 3 days. The purity and the concentration of the extracted DNA were determined spectrophotometerically, and the adequacy of DNA extracts for the PCR-based assay was assessed by amplifying a 1030-bp region of the mitochondrial D-loop. Although DNA from all the samples was suitable for PCR, the blood and hair samples provided a good quality DNA for restriction analysis of the PCR product compared with the buccal swab and urine samples. In the present study, hair samples proved to be a good source of genomic DNA for PCR-based methods. Hence, DNA of hair samples can also be used for the genomic disorder analysis in addition to the forensic analysis as a result of the ease of sample collection in a noninvasive manner, lower sample volume requirements, and good storage capability.  相似文献   

3.
4.
DNA is the most accessible biologic material for obtaining information from the human genome because of its molecular stability and its presence in every nucleated cell. Currently, single nucleotide polymorphism genotyping and DNA methylation are the main DNA-based approaches to deriving genomic and epigenomic disease biomarkers. Upon the discontinuation of the Schleicher & Schuell IsoCode product (Dassel, Germany), which was a treated paper system to elute DNA from several biologic sources for polymerase chain reaction (PCR) analysis, a high-yielding DNA elution method was imperative. We describe here an improved procedure of the not fully validated Whatman pH-based elution protocol. Our DNA elution procedure from buccal cells collected in Whatman FTA cards (Whatman Inc., Florham Park, NJ) yielded approximately 4 microg of DNA from a 6-mm FTA card punch and was successfully applied for HLA-DQB1 genotyping. The genotypes showed complete concordance with data obtained from blood of the same subjects. The achieved high DNA yield from buccal cells suggests a potential cost-effective tool for genomic and epigenomic disease biomarkers development.  相似文献   

5.
Molecular and genetic studies of canine disease phenotypes can be limited by the amount of DNA available for analysis. New methods have been developed to amplify the genomic DNA of a species producing large quantities of DNA from small starting amounts. Whole genome amplification (WGA) of DNA is now being used in human studies, although this technique has not been applied extensively in veterinary research. We evaluated WGA of canine DNA for suitability in a range of molecular tests. DNA from 93 canine blood extracted and 18 buccal swab samples was subjected to WGA using the GenomiPhi kit (Amersham). Genomic DNA was compared with WGA product using a range of techniques, including reference strand-mediated conformation analysis, denaturing high-performance liquid chromatography analysis, microsatellite genotyping, direct DNA sequencing, and single nucleotide polymorphism allelic discrimination. All samples amplified well, giving an average yield of 3 mug of DNA from 2.5 ng of starting material. Extremely high levels of experimental reproducibility and concordance were observed between source and WGA DNA samples for all analyses used: greater than 95% for blood extracted DNA and greater than 80% for buccal swab DNA. These studies clearly demonstrate the usefulness of WGA of canine DNA as a means of increasing DNA quantities for canine studies. This technique will have major implications for future veterinary research.  相似文献   

6.
Abstract

Buccal cell samples are increasingly used in epidemiological studies as a source of genomic DNA. The accurate and precise quantitation of human DNA is critical for the optimal use of these samples. However, it is complicated by the presence of bacterial DNA and wide inter-individual variation in DNA concentration from buccal cell collections. The paper evaluated the use of ultraviolet light (UV) spectroscopy, Höechst (H33258) and PicoGreen? as measures of total DNA, and real-time quantitative polymerase chain reaction (PCR) as a measure of human amplifiable DNA in buccal samples. Using serially diluted white blood cell DNA samples (at a concentration range of 300 to 0.5?ng µl?1), UV spectroscopy showed the largest bias, followed by Höechst, especially for low concentrations. PicoGreen and real-time PCR provided the most accurate and precise estimates across the range of concentrations evaluated, although an increase in bias with decreasing concentrations was observed. The ratio of real-time PCR to PicoGreen provided a reasonable estimate of the percentage of human DNA in samples containing known mixtures of human and bacterial DNA. Quantification of buccal DNA from samples collected in a breast cancer case-control study by PicoGreen and real-time PCR indicated that cytobrush and mouthwash DNA samples contain similar percentages of human amplifiable DNA. Real-time PCR is recommended for the quantification of buccal cell DNA in epidemiological studies since it provides precise estimates of human amplifiable DNA across the wide range of DNA concentrations commonly observed in buccal cell DNA samples.  相似文献   

7.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan?) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 μg) compared with cytobrush samples (1.9 μg from three cytobrushes) and tongue depressors (0.8 μg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

8.
Buccal cells are increasingly used as a source of quality DNA to improve participation rates in molecular studies. Here, three buccal cell collection protocols were compared to determine factors affecting the yield of cells, total DNA per sample, and DNA yield per cell. In addition, kinetic quantitative polymerase chain reaction (PCR) (TaqMan™) was used to quantify human DNA available for PCR. The method of collection used influenced the overall DNA yield per sample. The collection buffer used influenced the number of cells but not the overall DNA yield per sample. Repeated freezing and thawing did not affect overall DNA yield per sample, DNA yield per cell, or the total number of cells collected. Mouthwashes had the highest DNA yield per sample (20.8 µg) compared with cytobrush samples (1.9 µg from three cytobrushes) and tongue depressors (0.8 µg from three tongue depressors). However, mouthwash samples may contain significant non-human DNA and other contaminants that could interfere with some molecular studies. Spectrometry grossly overestimated the total DNA recovered from mouthwash samples compared with fluorometry or quantitative PCR.  相似文献   

9.
A rapid, nondestructive, reproducible and cheap DNA extraction method from body mucus and buccal cells of northern pike and brown trout is described. Buccal cells and body mucus were sampled on FTA Cards; the captured DNA was used directly for microsatellite and polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analyses. A complete concordance with control DNA was found. The genotyping error rate for microsatellite ranged from 1.9% to 3.3% for the northern pike and brown trout, respectively. This methodology, using for the first time these materials as a fish DNA source, combines speed of sampling and processing, with a twofold to a threefold time and costs saving.  相似文献   

10.
DNA/DNA genome microarray analysis together with genome sequencing suggests that the genome of members of the genus Streptomyces would seem to have a common structure including a linear genomic structure, a core of common syntenous Actinomycete genes, the presence of species specific terminal regions and two intermediate group of syntenous genes that seem to be genus specific. We analyzed Streptomyces species using DNA/DNA microarray comparative genome analysis. Only Streptomyces rimosus failed to give a congruent genome pattern for the genes found in Streptomyces coelicolor. We expanded the analysis to include a number of strains related to the type strain of S. rimosus and obtained a similar divergence from the main body of Streptomyces species. These strains showed very close identity to the original strain with no gene deletion or duplication detected. The 16S rRNA sequences of these S. rimosus strains were confirmed as very similar to the S. rimosus sequences available from the Ribosomal Database Project. When the SSU ribosomal RNA phylogeny of S. rimosus is analyzed, the species is positioned at the edge of the Streptomyces clade. We conclude that S. rimosus represents a distinct evolutionary lineage making the species a worthy possibility for genome sequencing.  相似文献   

11.
Direct amplification of minisatellite DNA by PCR (DAMD PCR) was used to amplify and subsequently clone several fragments of DNA from crucifer species. The PCR-derived fragments of DNA were generated using known minisatellite core sequences as PCR primers. Southern hybridization of these putative minisatellite DNA fragments revealed that many were genome-specific; they hybridized with high affinity only to the genomic DNA of the species from which they were cloned. The DNA fragments were believed to be dispersed in the genome, based on smear-like hybridization signals on EcoRI-, BamHI-, and HindIII-digested genomic DNA. Genome-specific probes were specifically isolated from Brassica rapa (A genome), Brassica nigra (B genome), and Sinapis alba in addition to several other crucifer species. The sequence of a B. rapa specific probe (pBr17.1.3A) contained a minisatellite region that could be divided into three tandem repeats; each repeat contained between two and five subrepeats and each subrepeat shared a highly conserved core region of 29 bp. This minisatellite sequence also hybridized with high affinity to the A genome species B. napus and B. juncea. This research showed that dispersed, genome-specific probes can be isolated using DAMD PCR and that these probes could be used to detect and quantify alien DNA present in progeny from intergeneric or interspecific crosses.  相似文献   

12.
The use of internal standards both during DNA extraction and PCR-DGGE procedure gives the opportunity to analyse the relative abundance of individual species back to the original sample, thereby facilitating relative comparative analysis of diversity. Internal standards were used throughout the DNA extraction and PCR-DGGE to compensate for experimental variability. Such variability causes decreased reproducibility among replicate samples as well as compromise comparisons between samples, since experimental errors cannot be differentiated from actual changes in the community abundance and structure. The use of internal standards during DNA extraction and PCR-DGGE is suitable for ecological and ecotoxicological experiments with microbial communities, where relative changes in the community abundance and structure are studied. We have developed a protocol Internal Standards in Molecular Analysis of Diversity (ISMAD) that is simple to use, inexpensive, rapid to perform and it does not require additional samples to be processed. The internal standard for DNA extraction (ExtrIS) is a fluorescent 510-basepair PCR product which is added to the samples prior to DNA extraction, recovered together with the extracted DNA from the samples and analysed with fluorescence spectrophotometry. The use of ExtrIS during isolation of sample DNA significantly reduced variation among replicate samples. The PCR internal standard (PCR(IS)) originates from the Drosophila melanogaster genome and is a 140-basepair long PCR product, which is amplified by non-competitive primers in the same PCR reaction tubes as the target DNA and analysed together with the target PCR product on the same DGGE gel. The use of PCR(IS) during PCR significantly reduced variation among replicate samples both when assessing total PCR product and when comparing bands representing species on a DGGE gel. The entire ISMAD protocol was shown to accurately describe changes in relative abundance in an environmental sample using PCR-DGGE. It should, however, be mentioned that despite the use of ISMAD some inherent biases still exist in DNA extraction and PCR-DGGE and these should be taken into consideration when interpreting the diversity in a sample based on a DGGE gel.  相似文献   

13.
Background aimsAn accurate and reliable assessment of bone marrow engraftment (BME) after hematopoietic stem cell transplantation (HSCT) is based on the ability to distinguish between recipient and donor cells at selected polymorphic short tandem repeat (STR) DNA loci. Buccal cells are an important source of DNA for determining the recipient's constitutional genotype, particularly in patients transplanted before the STR evaluation.MethodsGenomic DNA was extracted from the recipient buccal cells and from isolated CD3+ (T-cell lymphocyte) and CD33+ (myelocyte) cells after HSCT. BME analysis was performed using a STR-based polymerase chain reaction amplification method followed by fragment-size analysis for assessing the recipient-derived or donor-derived composition of cell lineage-specific peripheral blood DNA.ResultsWe identified three cases of complete buccal epithelial cell engraftment after HSCT detected by BME analysis, potentially leading to misinterpretation of testing results if these cells were used as the sole source for determining the recipient's genotype.ConclusionsThese cases suggest that complete engraftment of buccal epithelial cells may be a common finding in patients receiving HSCT, drawing attention to important issues such as the type of samples used for determining a patient's constitutional genotype that may confound testing results. This study also highlights the need for careful interpretation of the BME testing results in the context of the clinical findings.  相似文献   

14.
A method for apolipoprotein (apo) E genotyping was developed using the polymerase chain reaction (PCR) with allele-specific oligonucleotide primers (ASP). Synthetic oligonucleotides with base-pair mismatches at the 3' terminus were used as primers to amplify the apoE gene in subjects previously phenotyped using isoelectric focusing (IEF). Complementary primer-allele combinations were specifically amplified by PCR, together with a control pair of primers specific to the human prothrombin gene. Identification of genotype by PCR using ASP was consistent with the phenotypes that were determined by IEF for 14 healthy normolipidemic subjects. These results were achieved using DNA isolated from buccal epithelial cells obtained from a mouthwash or DNA extracted from leukocytes. Genotype identification required analysis of the PCR products on an ethidium-stained agarose gel, yielding results 3 h after DNA extraction. In comparison with other current methods, PCR using ASP is suggested as a rapid and simple noninvasive technique for determining population apoE allelic distribution.  相似文献   

15.
Teleost fish genome projects involving model species are resulting in a rapid accumulation of genomic and expressed DNA sequences in public databases. The expressed sequence tags (ESTs) collected in the databases can be mined for the analysis of both structural and functional genomics. In this study, we in silico analyzed 49,430 unigenes representing a total of 692,654 ESTs from four model fish for their potential use in developing simple sequence repeats (SSRs), or microsatellites. After bioinformatical mining, a total of 3,018 EST derived SSRs (EST-SSRs) were identified for 2,335 SSR containing ESTs (SSR-ESTs). The frequency of identified SSR-ESTs ranged from 1.5% for Xiphophorus to 7.3% for zebrafish. The dinucleotide repeat motif is the most abundant SSR, accounting for 47%, 52%, 64%, and 78% for medaka, Fundulus, zebrafish, and Xiphophorus, respectively. Simulation analysis suggests that a majority of these EST-SSRs have sufficient flanking sequences for polymerase chain reaction (PCR) primer design. Comparative DNA sequence analyses of SSR-ESTs identified several cross-species SSRs and sequences that may be used as cross-reference genes in comparative studies. For example, the flanking sequences of one SSR (CTG)n within the pituitary tumor-transforming gene (PTTG) 1 interacting protein (PTTGIP), showed conservation spanning the medaka, Fundulus, human, and mouse genomes. This study provides a large body of information on EST-SSRs that can be useful for the development of polymorphic markers, gene mapping, and comparative genome analysis. Functional analysis of these SSR-ESTs may reveal their role in metabolism and gene evolution of these model species.  相似文献   

16.
Chloroplast DNA sequence data are a versatile tool for plant identification or barcoding and establishing genetic relationships among plant species. Different chloroplast loci have been utilized for use at close and distant evolutionary distances in plants, and no single locus has been identified that can distinguish between all plant species. Advances in DNA sequencing technology are providing new cost‐effective options for genome comparisons on a much larger scale. Universal PCR amplification of chloroplast sequences or isolation of pure chloroplast fractions, however, are non‐trivial. We now propose the analysis of chloroplast genome sequences from massively parallel sequencing (MPS) of total DNA as a simple and cost‐effective option for plant barcoding, and analysis of plant relationships to guide gene discovery for biotechnology. We present chloroplast genome sequences of five grass species derived from MPS of total DNA. These data accurately established the phylogenetic relationships between the species, correcting an apparent error in the published rice sequence. The chloroplast genome may be the elusive single‐locus DNA barcode for plants.  相似文献   

17.
Microdroplets are an effective platform for segregating individual cells and amplifying DNA. However, a key challenge is to recover the contents of individual droplets for downstream analysis. This paper offers a method for embedding cells in alginate microspheres and performing multiple serial operations on the isolated cells. Rhodobacter sphaeroides cells were diluted in alginate polymer and sprayed into microdroplets using a fingertip aerosol sprayer. The encapsulated cells were lysed and subjected either to conventional PCR, or whole genome amplification using either multiple displacement amplification (MDA) or a two-step PCR protocol. Microscopic examination after PCR showed that the lumen of the occupied microspheres contained fluorescently stained DNA product, but multiple displacement amplification with phi29 produced only a small number of polymerase colonies. The 2-step WGA protocol was successful in generating fluorescent material, and quantitative PCR from DNA extracted from aliquots of microspheres suggested that the copy number inside the microspheres was amplified up to 3 orders of magnitude. Microspheres containing fluorescent material were sorted by a dilution series and screened with a fluorescent plate reader to identify single microspheres. The DNA was extracted from individual isolates, re-amplified with full-length sequencing adapters, and then a single isolate was sequenced using the Illumina MiSeq platform. After filtering the reads, the only sequences that collectively matched a genome in the NCBI nucleotide database belonged to R. sphaeroides. This demonstrated that sequencing-ready DNA could be generated from the contents of a single microsphere without culturing. However, the 2-step WGA strategy showed limitations in terms of low genome coverage and an uneven frequency distribution of reads across the genome. This paper offers a simple method for embedding cells in alginate microspheres and performing PCR on isolated cells in common bulk reactions, although further work must be done to improve the amplification coverage of single genomes.  相似文献   

18.
Single trophoblast cells circulating in the bloodstream of pregnant women are potential objects for noninvasive prenatal diagnosis. Owing to the very low concentration of cells of a fetal nature in the peripheral maternal blood, the choice of the method for whole genome amplification of the genetic material becomes topical. The key point in the use of single cells of a fetal nature for noninvasive prenatal diagnosis is to obtain DNA in an amount and of a quality acceptable for the analysis. In order to select the optimal method for whole genome amplification, a model experiment was conducted. We compared three different methods of whole genome amplification: linker-adaptor polymerase chain reaction (LA-PCR), degenerate oligonucleotide- primed PCR (DOP-PCR), and multiple displacement amplification (MDA). Subsequent analysis of the amplification products was performed by metaphase comparative genomic hybridization in order to evaluate the molecular karyotype of cells of a fetal nature with the known chromosome complement. As a result, an optimal method for whole genome amplification of the genetic material of single cells in a model experiment was determined by linker-adaptor PCR, which showed a more uniform representation of the genome regions compared with the other methods used.  相似文献   

19.

CONTEXT:

Amplification of Guanine-Cytosine (GC) -rich sequences becomes important in screening and diagnosis of certain genetic diseases such as diseases arising due to expansion of GC-rich trinucleotide repeat regions. However, GC-rich sequences in the genome are refractory to standard polymerase chain reaction (PCR) amplification and require a special reaction conditions and/or modified PCR cycle parameters.

AIM:

Optimize a cost effective PCR assay to amplify the GC-rich DNA templates.

SETTINGS AND DESIGN:

Fragile X mental retardation gene (FMR 1) is an ideal candidate for PCR optimization as its GC content is more than 80%. Primers designed to amplify the GC rich 5’ untranslated region of the FMR 1 gene, was selected for the optimization of amplification using DNA extracted from buccal mucosal cells.

MATERIALS AND METHODS:

A simple and rapid protocol was used to extract DNA from buccal cells. PCR optimization was carried out using three methods, (a) substituting a substrate analog 7-deaza-dGTP to dGTP (b) in the presence of a single PCR additive and (c) using a combination of PCR additives. All PCR amplifications were carried out using a low-cost thermostable polymerase.

RESULTS:

Optimum PCR conditions were achieved when a combination of 1M betaine and 5% dimethyl sulfoxide (DMSO) was used.

CONCLUSIONS:

It was possible to amplify the GC rich region of FMR 1 gene with reproducibility in the presence of betaine and DMSO as additives without the use of commercially available kits for DNA extraction and the expensive thermostable polymerases.  相似文献   

20.
A Genetic Linkage Map of the Male Goat Genome   总被引:32,自引:0,他引:32       下载免费PDF全文
This paper presents a first genetic linkage map of the goat genome. Primers derived from the flanking sequences of 612 bovine, ovine and goat microsatellite markers were gathered and tested for amplification with goat DNA under standardized PCR conditions. This screen made it possible to choose a set of 55 polymorphic markers that can be used in the three species and to define a panel of 223 microsatellites suitable for the goat. Twelve half-sib paternal goat families were then used to build a linkage map of the goat genome. The linkage analysis made it possible to construct a meiotic map covering 2300 cM, i.e., >80% of the total estimated length of the goat genome. Moreover, eight cosmids containing microsatellites were mapped by fluorescence in situ hybridization in goat and sheep. Together with 11 microsatellite-containing cosmids previously mapped in cattle (and supposing conservation of the banding pattern between this species and the goat) and data from the sheep map, these results made the orientation of 15 linkage groups possible. Furthermore, 12 coding sequences were mapped either genetically or physically, providing useful data for comparative mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号