首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are molecules which regulate the development and maintenance of specific functions in different populations of peripheral and central neurons, amongst them sensory neurons of neural crest and placode origin. Under physiological conditions NGF is synthesized by peripheral target tissues, whereas BDNF synthesis is highest in the CNS. This situation changes dramatically after lesion of peripheral nerves. As previously shown, there is a marked rapid increase in NGF mRNA in the nonneuronal cells of the damaged nerve. The prolonged elevation of NGF mRNA levels is related to the immigration of activated macrophages, interleukin-1 being the most essential mediator of this effect. Here we show that transsection of the rat sciatic nerve also leads to a very marked increase in BDNF mRNA, the final levels being even ten times higher than those of NGF mRNA. However, the time-course and spatial pattern of BDNF mRNA expression are distinctly different. There is a continuous slow increase of BDNF mRNA starting after day 3 post-lesion and reaching maximal levels 3-4 wk later. These distinct differences suggest different mechanisms of regulation of NGF and BDNF synthesis in non-neuronal cells of the nerve. This was substantiated by the demonstration of differential regulation of these mRNAs in organ culture of rat sciatic nerve and Schwann cell culture. Furthermore, using bioassays and specific antibodies we showed that cultured Schwann cells are a rich source of BDNF- and ciliary neurotrophic factor (CNTF)-like neurotrophic activity in addition to NGF. Antisera raised against a BDNF-peptide demonstrated BDNF-immunoreactivity in pure cultured Schwann cells, but not in fibroblasts derived from sciatic nerve.  相似文献   

2.
This article reports the results of a systematic investigation of the different types of antibodies produced in the course of a long-term immunization of rats with mouse nerve growth factor (NGF). We have characterized three types of monoclonal antibodies, namely: (1) antibodies that bind to NGF and inhibit its binding to target cells and its biological activity in culture (type A); (2) antibodies that bind to and precipitate NGF but do not inhibit its binding to target cells or its biological activity (type B); (3) antibodies that fail to recognize NGF itself, but inhibit nonetheless its binding to target cells (type C). These antibodies bind to an antigen present on NGF target cells and not on rat fibroblasts lacking NGF receptor. They appear thus to be antiidiotypic antibodies directed against the NGF receptor, developed as a consequence of the long-term immunization with NGF.  相似文献   

3.
4.
The neuronotrophic factor NGF binds to peripheral neurons of the dorsal root ganglion and the sympathetic nervous system. NGF binds to a cell surface receptor, NGFR, on these cells and displays Kd's of 10(-9) and 10(-11)M. NGF receptors have also been reported for basal forebrain magnocellular neurons. In addition, NGF specifically binds to NGFR on Schwann cells although the biological significance of this binding is not known. Here we report that NGF binds in a saturable and specific fashion to receptors on cultured isolated populations of rat astrocytes but not to oligodendrocytes. The binding to astrocytes in culture displayed a Kd of 2.7 +/- 1.0 nM with 36,000 receptors per cell.  相似文献   

5.
It has been shown that panaxydol (PND) can mimic the neurotrophic effect of nerve growth factor (NGF) normally secreted by Schwann cells (SC) and protect neurons against injury. To evaluate the effect of PND on hypoxia-induced SC death and expression and secretion of neurotrophic factors (NGF and brain derived neurotrophic factor (BDNF)), hypoxic SCs were cultured in vitro and then treated with PND (0-20 microM). The MTT (3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, immunocytochemistry, ELISA and RT-PCR were employed to examine the effects. We found that hypoxia resulted in a significant decrease in SCs viability (MTT: 64+/-4.7% of control group) and nearly a 3.3-fold increase of intracellular level of active caspase-3. PND (5-20 microM) treatment significantly rescued the SCs from hypoxia-induced injury (85+/-8.2%; 92+/-8.6%; 87+/-7.3%) and reduced caspase-3 activity with the maximal effect occurred at 10 microM (P<0.01), reducing to about 1.6-fold of control level. Furthermore, PND treatment also enhanced NGF and BDNF mRNA levels in hypoxic SCs and promoted protein expression and secretion. BDNF mRNA in hypoxic SCs was restored to about 90% of normal level and NGF mRNA was elevated to 1.4-fold of control after 10 microM PND treatment. These observations showed that PND protects primary cultured SCs against hypoxia-induced injury and enhances NTF-associated activities.  相似文献   

6.
C F Ibez  T Ebendal    H Persson 《The EMBO journal》1991,10(8):2105-2110
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are two members of a family of neurotrophic factors which show both overlapping and distinct neurotrophic activities. Using site-directed mutagenesis, chimeric molecules were constructed where different combinations of sequences from BDNF replaced the corresponding sequences in NGF. The resulting molecules were transiently expressed in COS cells and conditioned media containing the chimeric proteins were assayed for biological activity in explanted chick sympathetic, spinal and nodose ganglia. Our results show that the biological specificities of the two proteins are obtained by specific combinations of a set of sequences that differ between the two molecules. Some of these combinations allowed us to engineer molecules which display multiple neurotrophic activities recruited from both the NGF and BDNF proteins.  相似文献   

7.
Astroglial cells and various types of non-neuronal cells in the peripheral nervous system, such as epithelial, Schwann and fibroblast cells synthesize and secrete nerve growth factor (NGF) in culture. NGFmRNA contents are well-correlated with the density of axonal projection from NGF-sensitive neurons, suggesting that NGF synthesis in vivo tissues is regulated by neuronal environments. We investigated neuronal regulations of NGF synthesis using cultured mouse astroglial cells and rat pheochromocytoma PC12 cells. It was found that astroglial NGF synthesis was enhanced by the addition of catecholamine into the cultured medium or the co-culture with differentiated PC12 cells. These results suggest that NGF synthesis in the in vivo tissues is increased by the release of catecholamine as neurotransmitters and/or the contact of NGF-producing cells with differentiated cell bodies and neurites of NGF-sensitive neurons.  相似文献   

8.
The mammalian tooth pulp becomes innervated by nociceptive and sympathetic axons relatively late during development, when part of the root has formed. In the adult, regenerating axons from an injured tooth nerve or sprouting axons from uninjured nerves in the vicinity rapidly reinnervate denervated tooth pulps. These observations indicate that tooth pulp tissue can use molecular factors to attract pulpal axons from local nerve trunks. The present study examines the hypothesis that these factors include nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF). Explants of trigeminal ganglia from neonatal rat pups showed a distinct neurite outgrowth when co-cultured with pulpal explants collected from molar teeth of 12-day old pups, or after application of a pulpal extract. Control cultures, containing single ganglionic explants, or explants co-cultured with heat-treated pulpal tissue, exhibited a sparse neurite outgrowth. Exogenous NGF and/or GDNF, but not exogenous BDNF, stimulated neurite outgrowth from ganglionic explants. Unexpectedly, application of antibodies against NGF, BDNF and/or GDNF to co-cultures of ganglionic and pulpal explants did not inhibit neuritogenesis. Control experiments showed that IgG molecules readily penetrate the gel used for culture and that even very high concentrations of NGF and GDNF antibodies in combination failed to block neurite growth. On the basis of these data we suggest that other as yet unknown neurite-promoting factors might be present and active in TG/pulpal co-cultures.  相似文献   

9.
In the developing peripheral nerve, Schwann cells proliferate rapidly and then become quiescent, an essential step in control of Schwann cell differentiation. Cell proliferation is controlled by growth factors that can exert positive or inhibitory influences on DNA synthesis. It has been well established that neonatal Schwann cells divide very slowly in culture when separated from neurons but here we show that when culture was continued for several months some cells began to proliferate rapidly and non-clonal lines of immortalised Schwann cells were established which could be passaged for over two years. These cells had a similar molecular phenotype to short-term cultured Schwann cells, except that they expressed intracellular and cell surface fibronectin. The difference in proliferation rates between short- and long-term cultured Schwann cells appeared to be due in part to the secretion by short-term cultured Schwann cells of growth inhibitory activity since DNA synthesis of long-term, immortalised Schwann cells was inhibited by conditioned medium from short-term cultures. This conditioned medium also inhibited DNA synthesis in short-term Schwann cells stimulated to divide by glial growth factor or elevation of intracellular cAMP. The growth inhibitory activity was not detected in the medium of long-term immortalised Schwann cells, epineurial fibroblasts, a Schwannoma (33B), astrocytes or a fibroblast-like cell-line (3T3) and it did not inhibit serum-induced DNA synthesis in epineurial fibroblasts, 33B cells or 3T3 cells. The activity was apparently distinct from transforming growth factor-beta, activin, IL6, epidermal growth factor, atrial natriuretic peptide and gamma-interferon and was heat and acid stable, resistant to collagenase and destroyed by trypsin treatment. We raise the possibility that loss of an inhibitory autocrine loop may contribute to the rapid proliferation of long-term cultured Schwann cells and that an autocrine growth inhibitor may have a role in the cessation of Schwann cell division that precedes differentiation in peripheral nerve development.  相似文献   

10.
Receptors for beta-nerve growth factor (beta NGF), so far regarded as specific cell surface markers of certain peripheral neurones, were found to be expressed on cultured non-neuronal cells of chick embryo dorsal root ganglia (drg) (Kd beta NGF = 2 X 10(-9) M). Autoradiography revealed that binding of [125I] beta NGF was restricted to a subpopulation of the non-neuronal drg cells. Cultured embryonic skin fibroblasts, liver cells, gut cells, muscle fibroblasts, myoblasts, and myotubes, as well as macrophages and the cell lines 3T3, 3T3SV40, BHK, BHK Py, PCC3 and ND1, did not express receptors for beta NGF. Non-neuronal drg cells obtained by a procedure designed for the preparation of pure Schwann cells, as well as RN6 Schwannoma cells, were beta NGF receptor positive. The beta NGF receptor-positive non-neuronal drg cells displayed behaviour typical of Schwann cells in their interaction with drg neurones in single cell, as well as explant cultures. Three stages of neurone-Schwann cell interaction were discernible: (1) association--neurites preferentially grew over beta NGF receptor-positive non-neuronal cells; (2) cell division/alignment--beta NGF receptor-positive non-neuronal cells were induced to proliferate and aligned and elongated along neurites; (3) ensheathment--the outline of beta NGF receptor-positive non-neuronal cells and neurites merged. In drg cell cultures prepared from embryonic stages E6-E10, 25-40% of the non-neuronal cells were beta NGF receptor-positive. Later in development, from E12 onward, less than or equal to 1% of the cultured non-neuronal cells expressed beta NGF receptors.  相似文献   

11.
These studies were initiated to determine whether the soluble, truncated form of the nerve growth factor (NGF) receptor arises from post-translational processing of the intact, membrane-bound receptor or from an alternatively spliced mRNA. Pulse-chase analysis of cultured primary rat Schwann cells coupled with immunoprecipitations using antibodies to the intracellular and extracellular domains of the receptor were used to monitor receptor production. Three forms of the NGF receptor (80, 83, and 85 kDa) displaying a precursor product relationship were detected over the 2-h chase period; only the 85-kDa species was detected on the cell surface. Truncated receptors (50 and 52 kDa) were detected in conditioned media 5 h after cell labeling but were never observed intracellularly. Polymerase chain reaction and RNase protection analyses of NGF receptor mRNA targeted toward the coding region for the transmembrane domain detected no splice variants that could generate truncated receptor, and media conditioned by fibroblasts transfected with rat receptor cDNA, in which splicing cannot occur, nonetheless contained the truncated receptor protein. Taken together, these results suggest that the truncated NGF receptor does not arise as a distinct translation product but rather from a post-translational modification of the intact, surface-bound form of the protein.  相似文献   

12.
The physiological roles of sonic hedgehog (Shh) have been intensively characterized in development of various organs. However, their functions in adult tissues have not been fully elucidated. We investigated the expression and the potential function of Shh in crush-injured adult rat sciatic nerves. The Shh expression was up-regulated in Schwann cells adjacent to the injured site. The time-course analyses of various neurotrophic factors revealed the up-regulation of Shh mRNA followed by that of brain-derived neurotrophic factor (BDNF) mRNA. The continuous administration of cyclopamine, a hedgehog signal inhibitor, to the injured site suppressed the increase of BDNF expression and deteriorated the survival of motor neurons in lumbar spinal cord. Treatment of exogenous Shh in cultured Schwann cells enhanced the BDNF expression. The BDNF promoter activity (exon I and II) was increased in IMS32 cells co-transfected with Shh and its receptor Smoothened. These findings imply that the up-regulated expression of Shh in Schwann cells may play an important role in injured motor neurons through the induction of BDNF.  相似文献   

13.
Our previous finding that skin-derived and muscle-derived molecules can be used to sort regenerating rat sciatic nerve axons evoked questions concerning neuron-target interactions at the level of single cells, which prompted the present study. The results show that dorsal root ganglion (DRG) neurons co-cultured with fibroblast-like skin-derived cells emit many neurites. These have a proximal linear segment and a distal network of beaded branches in direct relation to skin-derived cells. Electron microscopic examination of such co-cultures showed bundles of neurites at some distance from the target cells and single profiles closely apposed to subjacent cells. RNase protection assay revealed that cultivated skin-derived cells express nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). In co-cultures of DRG neurons and 3T3 fibroblasts overexpressing either of the neurotrophins produced by skin-derived cells the picture varied. NT-3 transfected 3T3 fibroblasts gave a growth pattern similar to that seen with skin-derived cells. Neurons co-cultured with mock-transfected 3T3 fibroblasts were small and showed weak neurite growth. In co-cultures with a membrane insert between skin-derived cells or 3T3 fibroblasts and DRG neurons few neurons survived and neurite growth was very sparse. We conclude that skin-derived cells stimulate neurite growth from sensory neurons in vitro, that these cells produce NGF, BDNF, NT-3 and NT-4 and that 3T3 fibroblasts producing NT-3 mimic the effect of skin-derived cells on sensory neurons in co-culture. Finally the results suggest that cell surface molecules are important for neuritogenesis.  相似文献   

14.
The immunological properties of the neurotrophins NGF, BDNF, and NT-3 were compared using polyclonal and monoclonal antibodies against the subunit of mouse NGF. Affinity-purified anti-NGF IgG consistently recognized NGF and NT-3 on Western blots, and inhibited the trophic activity of NGF and NT-3 but not BDNF. In contrast, anti-NGF monoclonal antibodies did not block the trophic activity of either NT-3 or BDNF. These results are consistent with the greater structural overlap between NGF and NT-3 than between NGF and BDNF.  相似文献   

15.
Schwann cells from early postnatal mouse sciatic nerve were obtained as a homogenous population and shown by indirect immunofluorescence to express the neural cell adhesion molecules L1, N-CAM and J1 and their common carbohydrate epitope L2/HNK-1. L1 and N-CAM are synthesized in molecular forms that are slightly different from those expressed by small cerebellar neurons or astrocytes. As in astrocytes, the J1 antigen is expressed by Schwann cells in multiple forms generally ranging from 160 to 230 kd in the reduced state. J1 is secreted by Schwann cells in a 230-kd mol. wt form. Expression of L1 by Schwann cells can be regulated by nerve growth factor (NGF). L1 expression on the cell surface is increased 1.6-fold in the presence of NGF after 3 days of maintenance in vitro and 3-fold after 16 days. NGF does not change expression of N-CAM. The glia-derived neurite-promoting factor (GdNPF) increases L1 expression by a factor of 1.9 and decreases N-CAM expression by a factor of 0.4 after 3 days in vitro. J1 expression on Schwann cell surfaces remains unchanged in the presence of NGF or GdNPF. Antibodies to NGF abolish the influence of NGF on L1 expression. Addition of NGF antibodies to the Schwann cell cultures without exogenously added NGF decreases L1 expression, indicating that Schwann cells secrete NGF that may influence L1 expression by an autocrine mechanism. Our experiments show for the first time that cell adhesion molecule expression on a non-neuronal cell, the Schwann cell, can be directly regulated by the neurotrophic factor NGF. These observations indicate a considerable degree of 'plasticity' of peripheral glia in regulating cell adhesion molecule expression.  相似文献   

16.
Sympathetic nervous system (SNS) plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF) and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts) isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of cardiac sympathetic innervation and neurocardiac synapse stability. They also suggest that neurocardiac synapse functionality relies on a triptych with tight interaction between sympathetic nerve endings, cardiomyocytes and fibroblasts. Deregulations of this triptych may be involved in pathophysiology of cardiac diseases.  相似文献   

17.
Previous experiments with purified mouse and bovine nerve growth factor (NGF) have shown that the biological activities of these two NGFs are identical, whereas the immunological cross-reactivity of antibodies produced against the two NGF molecules is very limited. This observation, together with the fact that antibodies to mouse NGF do not affect the development of sympathetic and sensory neurons in chick embryos, suggests that the domain of the NGF molecules responsible for the biological action has been highly conserved during evolution, whereas other domains determining the immunological properties were under less rigorous evolutionary constraint. The nucleotide sequences of bovine and chick NGF were determined from a cDNA clone prepared from mRNA of bovine seminal vesicles and from cloned chick genomic DNA, and the amino acid sequences deduced therefrom were compared with the available sequences of mouse and human NGF. All six cysteine residues were conserved in agreement with the previous finding that the biological activity of NGF is conformation-dependent requiring intact disulfide bridges. Amino acid changes are mainly confined to hydrophilic regions expected to be potential antigenic determinants, thus providing an explanation for the poor immunological cross-reactivities between the different NGFs. One single hydrophilic region is conserved in all NGFs and this region could be involved in the biological activity. The carboxy termini of bovine and chick NGF differ from that of mouse NGF, the changes in the amino acid sequences suggest that chick and bovine NGF are probably not processed by the gamma-subunit and that no 7S complex can be formed as in the mouse submandibular gland.  相似文献   

18.
Implantation of bone marrow stromal cells (MSCs) produces an improved functional outcome of peripheral nerve repair. In this study, rat dorsal root ganglion (DRG) explants, rat DRG neurons, and rat Schwann cells (SCs) were treated with monkey MSC-conditioned medium, respectively, and then subjected to MTT assay, Bromodeoxyuridine/Hoechst 33342 double staining, flow cytometry, immunohistochemistry, real-time quantitative PCR, and Western blot analysis, respectively. The results showed that MSC-conditioned medium enhanced axon growth and neurogenesis in cultured DRG explants, augmented cell survival of and expression of NF and GAP-43 by cultured DRG neurons, promoted cell survival and proliferation of cultured SCs, and increased the expression of NGF, BDNF, and bFGF in cultured SCs. We also found that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 1/2 pathway was involved in the enhanced cell proliferation of SCs evoked by MSC-conditioned medium. The data of this study might help the understanding of MSCs-based treatment for peripheral nerve repair.  相似文献   

19.
Abstract: The ability of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5) to promote neuronal survival and phenotypic differentiation was examined in dissociated cultures from embryonic day 16 rat cerebellum. BDNF treatment increased the survival of neuron-specific enolase-immunopositive cells by 250 and 400% after 8 and 10 days in culture, respectively. A subpopulation of these neurons, the Purkinje cells, identified by calbindin staining, was increased to an equivalent extent, ∼200%, following BDNF, NT-4/5, or NT-3 treatment. The number of GABAergic neurons, identified by GABA immunoreactivity, was greatly increased by treatment with BDNF (470%) and moderately by NT-4/5 (46%), whereas NT-3 was without effect. NGF failed to increase the number of either Purkinje cells or GABAergic neurons. Addition of BDNF within 48 h of cell plating was required to obtain a maximal increase in Purkinje cell number after 8 days. In contrast, the NT-3 responses were nearly equivalent even if treatment was delayed for 96 h after plating. BDNF, NT-4/5, and NT-3, but not NGF, induced the rapid expression of the immediate early gene c- fos . Immunocytochemical double-labeling with antibodies to c-fos and calbindin was used to identify Purkinje cells that responded to neurotrophin treatment by induction of c-fos. After 4 days in vitro, both BDNF and NT-3 induced the formation of c-fos protein in calbindin-immunopositive neurons, whereas NT-4/5 did not. The latter results suggest that although BDNF and NT-4/5 have been shown to act through a common receptor, TrkB, it appears that the effects of BDNF and NT-4/5 are not identical.  相似文献   

20.
In the rat sciatic nerve, the relationship between Schwann cells, axons, the extracellular matrix and perineurial sheath cells undergoes extensive modification between embryo day 15 and the onset of myelination during the first postnatal day. Little is known about molecular changes in Schwann cells in this important prenatal period. In the present paper, we use immunofluorescence to study the prenatal development and postnatal regulation of the antigen(s) recognized by the 04 monoclonal antibody and a well-characterized rat monoclonal antibody to sulfatide, A007. We show that, in a series of immunochemical tests, the 04 antibody recognizes only sulfatide in neonatal and adult rat nerves. Both antibodies first bind to Schwann cells in the sciatic nerve at embryo day 16-17, and all Schwann cells bind both antibodies at birth. In the adult nerve, both nonmyelin-forming and myelin-forming cells are labelled with the antibodies. Schwann cells dissociated from embryo day 15 nerves and cultured in the absence of axons develop neither 04 nor A007 binding on schedule, and 04-positive and A007-positive Schwann cells from postnatal nerves lose the ability to bind these antibodies during the first few days in culture. Schwann cells in the distal stump of transected nerves also sharply down-regulate cell surface binding of 04. High numbers of 04-positive or A007-positive Schwann cells reappear in cultures treated with agents that mimic or elevate intracellular cAMP. We conclude that two anti-sulfatide antibodies 04 and A007, recognize an antigen, probably sulfatide, that appears very early in Schwann cell development (one to two days prior to galactocerebroside) but is nevertheless subject to upregulation by axonal contact or elevation of intracellular cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号