首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 495 毫秒
1.
DNA damage induced by the carcinogen benzo[a]pyrene dihydrodiol epoxide (BPDE) induces a Chk1-dependent S-phase checkpoint. Here, we have investigated the molecular basis of BPDE-induced S-phase arrest. Chk1-dependent inhibition of DNA synthesis in BPDE-treated cells occurred without detectable changes in Cdc25A levels, Cdk2 activity, or Cdc7/Dbf4 interaction. Overexpression studies showed that Cdc25A, cyclin A/Cdk2, and Cdc7/Dbf4 were not rate-limiting for DNA synthesis when the BPDE-induced S-phase checkpoint was active. To investigate other potential targets of the S-phase checkpoint, we tested the effects of BPDE on the chromatin association of DNA replication factors. The levels of chromatin-associated Cdc45 (but not soluble Cdc45) were reduced concomitantly with BPDE-induced Chk1 activation and inhibition of DNA synthesis. The chromatin association of Mcm7, Mcm10, and proliferating cell nuclear antigen was unaffected by BPDE treatment. However, the association between Mcm7 and Cdc45 in the chromatin fraction was inhibited in BPDE-treated cells. Chromatin immunoprecipitation analyses demonstrated reduced association of Cdc45 with the beta-globin origin of replication in BPDE-treated cells. The inhibitory effects of BPDE on DNA synthesis, Cdc45/Mcm7 associations, and interactions between Cdc45 and the beta-globin locus were abrogated by the Chk1 inhibitor UCN-01. Taken together, our results show that the association between Cdc45 and Mcm7 at origins of replication is negatively regulated by Chk1 in a Cdk2-independent manner. Therefore, Cdc45 is likely to be an important target of the Chk1-mediated S-phase checkpoint.  相似文献   

2.
Carcinogen-induced S-phase arrest is Chk1 mediated and caffeine sensitive.   总被引:7,自引:0,他引:7  
We have investigated the mechanism of S-phase arrest elicited by the carcinogen benzo(a)pyrene dihydrodiol epoxide (BPDE) in p53-deficient cells. Inhibition of DNA synthesis after BPDE treatment was rapid and dose dependent (approximately 50% inhibition after 2 h with 50 nM BPDE). Cells treated with low doses (50-100 nM) of BPDE resumed DNA synthesis after a delay of approximately 4-8 h, whereas cells that received high doses of BPDE (600 nM) failed to recover from S-phase arrest. The checkpoint kinase Chk1 (but not Chk2) was phosphorylated after treatment with low doses of BPDE. High concentrations of BPDE elicited phosphorylation of both Chk1 and Chk2. Adenovirus-mediated expression of "dominant-negative" Chk1 (but not dominant-negative Chk2) and the Chk1 inhibitor UCN-01 abrogated the S-phase delay elicited by low doses of BPDE. Consistent with a role for the caffeine-sensitive ATM or ATR protein kinase in low-dose BPDE-induced S-phase arrest, both Chk1 phosphorylation and S-phase arrest were abrogated by caffeine. However, low doses of BPDE elicited Chk1 phosphorylation and S-phase arrest in AT cells (from ataxia telangiectasia patients), demonstrating that ATM is dispensable for S-phase checkpoint responses to this genotoxin. BPDE-induced Chk1 phosphorylation and S-phase arrest were abrogated by caffeine treatment in AT cells, suggesting that a caffeine-sensitive kinase other than ATM is an important mediator of responses to BPDE-adducted DNA. Overall, our data demonstrate the existence of a caffeine-sensitive, Chk1-mediated, S-phase checkpoint that is operational in response to BPDE.  相似文献   

3.
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.  相似文献   

4.
Previously we identified an intra-S-phase cell cycle checkpoint elicited by the DNA-damaging carcinogen benzo[a]pyrene-dihydrodiol epoxide (BPDE). Here we have investigated the roles of lesion bypass DNA polymerases polkappa and poleta in the BPDE-induced S-phase checkpoint. BPDE treatment induced the re-localization of an ectopically expressed green fluorescent protein-polkappa fusion protein to nuclear foci containing sites of active DNA synthesis in human lung carcinoma H1299 cells. In contrast, a similarly expressed yellow fluorescent protein-poleta fusion protein showed a constitutive nuclear focal distribution at replication forks (in the same cells) that was unchanged in response to BPDE. BPDE-induced formation of green fluorescent protein-polkappa nuclear foci was temporally coincident with checkpoint-mediated S-phase arrest. Unlike "wild-type" cells, Polk(-/-) mouse embryonic fibroblasts (MEFs) failed to recover from BPDE-induced S-phase arrest, while exhibiting normal recovery from S-phase arrest induced by ionizing radiation and hydroxyurea. XPV fibroblasts lacking poleta showed a normal S-phase checkpoint response to BPDE (but failed to recover from the UV light-induced S-phase checkpoint), in sharp contrast to Polk(-/-) MEFs. The persistent S-phase arrest in BPDE-treated Polk(-/-) cells was associated with increased levels of histone gammaH2AX (a marker of DNA double-strand breaks (DSBs)) and activation of the DSB-responsive kinases ATM and Chk2. These data suggest that in the absence of polkappa, replication forks stall at sites of damage and collapse and generate DSBs. Therefore, we conclude that the trans-lesion synthesis enzyme polkappa is specifically required for normal recovery from the BPDE-induced S-phase checkpoint.  相似文献   

5.
Formation of primed single‐stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR‐mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA‐mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y‐family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9‐1‐1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9‐1‐1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.  相似文献   

6.
Somatic hypermutation (SHM) of immunoglobulin (Ig) genes is triggered by the activity of activation-induced cytidine deaminase (AID). AID induces DNA lesions in variable regions of Ig genes, and error-prone DNA repair mechanisms initiated in response to these lesions introduce the mutations that characterize SHM. Error-prone DNA repair in SHM is proposed to be mediated by low-fidelity DNA polymerases such as those that mediate trans-lesion synthesis (TLS); however, the mechanism by which these enzymes are recruited to AID-induced lesions remains unclear. Proliferating cell nuclear antigen (PCNA), the sliding clamp for multiple DNA polymerases, undergoes Rad6/Rad18-dependent ubiquitination in response to DNA damage. Ubiquitinated PCNA promotes the replacement of the replicative DNA polymerase stalled at the site of a DNA lesion with a TLS polymerase. To examine the potential role of Rad18-dependent PCNA ubiquitination in SHM, we analyzed Ig gene mutations in Rad18 knockout (KO) mice immunized with T cell-dependent antigens. We found that SHM in Rad18 KO mice was similar to wild-type mice, suggesting that Rad18 is dispensable for SHM. However, residual levels of ubiquitinated PCNA were observed in Rad18 KO cells, indicating that Rad18-independent PCNA ubiquitination might play a role in SHM.  相似文献   

7.
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.  相似文献   

8.
Rad18 protein is required for mono-ubiquitination of PCNA and trans-lesion synthesis during DNA lesion bypass in eukaryotic cells but it remains unknown how it is activated after DNA damage. We expressed GFP-tagged human (h)Rad18 in Chinese hamster cells and found that it can be completely extracted from undamaged nuclei by Triton X-100 and methanol. However, several hours after treatment with methyl methanesulfonate (MMS) Triton-insoluble form of GFP-hRad18 accumulates in S-phase nuclei where it colocalizes with PCNA. This accumulation is suppressed by inhibitors of protein kinases staurosporine and wortmannin but is not effected by roscovitine. We also found that methyl methanesulfonate induces phosphorylation of Ser-317 in protein kinase Chk1 and Ser-139 in histone H2AX and stimulates formation of single-stranded DNA at replication foci. Together, our results suggest that MMS-induced accumulation of hRad18 protein at stalled forks involves protein phosphorylation which may be performed by S-phase checkpoint kinases.  相似文献   

9.
It has long been appreciated that Cdc7 is an essential protein kinase that phosphorylates Mcm2-7 helicase subunits to promote initiation of DNA replication. In addition to its well-elucidated role in DNA replication, recent studies suggest that DDK is active in genotoxin-treated cells and may mediate aspects of the DNA damage response. However, specific role(s) of DDK and its effector targets in DNA damage signaling have not been defined. A recent study from our laboratories has identified the E3 ubiquitin ligase Rad18 as novel substrate of DDK in vitro and in human cells. Rad18 plays a central role in a post-replication DNA repair pathway termed ‘Trans-Lesion Synthesis’ (TLS) by promoting recruitment of DNA Polymerase eta (Polη) and other TLS polymerases to stalled replication forks. DDK-mediated Rad18 phosphorylation promotes Rad18-Polη complex formation and facilitates Rad18-dependent recruitment of Polη to stalled replication forks. The mechanisms that regulate Rad18-dependent TLS are incompletely understood. Our study provides the first demonstration of Rad18 regulation by direct phosphorylation and defines a novel mechanism for Rad18-dependent recruitment of TLS polymerases to stalled forks. This study also demonstrates a molecular basis for integration of TLS with S-phase progression via the essential Cdc7 kinase. These findings reveal unexpected mechanistic insights to the regulation of the TLS pathway and Polη recruitment.  相似文献   

10.
Phosphorylation of histone H2AX by ATM and ATR establishes a chromatin recruitment platform for DNA damage response proteins. Phospho-H2AX (γH2AX) has been most intensively studied in the context of DNA double-strand breaks caused by exogenous clastogens, but recent studies suggest that DNA replication stress also triggers formation of γH2A (ortholog of γH2AX) in Schizosaccharomyces pombe. Here, a focused genetic screen in fission yeast reveals that γH2A is critical when there are defects in Replication Factor C (RFC), which loads proliferating cell nuclear antigen (PCNA) clamp onto duplex DNA. Surprisingly Chk1, Cds1/Chk2 and the Rad9-Hus1-Rad1 checkpoint clamp, which are crucial for surviving many genotoxins, are fully dispensable in RFC-defective cells. Immunoblot analysis confirms that Rad9-Hus1-Rad1 is not required for formation of γH2A by Rad3/ATR in S-phase. Defects in DNA polymerase epsilon, which binds PCNA in the replisome, also create an acute need for γH2A. These requirements for γH2A were traced to its role in docking with Brc1, which is a 6-BRCT-domain protein that is structurally related to budding yeast Rtt107 and mammalian PTIP. Brc1, which localizes at stalled replication forks by binding γH2A, prevents aberrant formation of Replication Protein A (RPA) foci in RFC-impaired cells, suggesting that Brc1-coated chromatin stabilizes replisomes when PCNA or DNA polymerase availability limits DNA synthesis.  相似文献   

11.
The E3 ubiquitin ligase Rad18 chaperones DNA polymerase η (Polη) to sites of UV-induced DNA damage and monoubiquitinates proliferating cell nuclear antigen (PCNA), facilitating engagement of Polη with stalled replication forks and promoting translesion synthesis (TLS). It is unclear how Rad18 activities are coordinated with other elements of the DNA damage response. We show here that Ser-409 residing in the Polη-binding motif of Rad18 is phosphorylated in a checkpoint kinase 1-dependent manner in genotoxin-treated cells. Recombinant Rad18 was phosphorylated specifically at S409 by c-Jun N-terminal kinase (JNK) in vitro. In UV-treated cells, Rad18 S409 phosphorylation was inhibited by a pharmacological JNK inhibitor. Conversely, ectopic expression of JNK and its upstream kinase mitogen-activated protein kinase kinase 4 led to DNA damage-independent Rad18 S409 phosphorylation. These results identify Rad18 as a novel JNK substrate. A Rad18 mutant harboring a Ser → Ala substitution at S409 was compromised for Polη association and did not redistribute Polη to nuclear foci or promote Polη-PCNA interaction efficiently relative to wild-type Rad18. Rad18 S409A also failed to fully complement the UV sensitivity of Rad18-depleted cells. Taken together, these results show that Rad18 phosphorylation by JNK represents a novel mechanism for promoting TLS and DNA damage tolerance.  相似文献   

12.
Postreplication repair (PRR) pathways play important roles in restarting stalled replication forks and regulating mutagenesis. In yeast, Rad5-mediated damage avoidance and Rad18-mediated translesion synthesis (TLS) are two forms of PRR. Two Rad5-related proteins, SHPRH and HLTF, have been identified in mammalian cells, but their specific roles in PRR are unclear. Here, we show that HLTF and SHPRH suppress mutagenesis in a damage-specific manner, preventing mutations induced by UV and MMS, respectively. Following UV, HLTF enhances PCNA monoubiquitination and recruitment of TLS polymerase η, while also inhibiting SHPRH function. In contrast, MMS promotes the degradation of HLTF and the interactions of SHPRH with Rad18 and polymerase κ. Our data suggest not only that cells differentially utilize HLTF and SHPRH for different forms of DNA damage, but also, surprisingly, that HLTF and SHPRH may coordinate the two main branches of PRR to choose the proper bypass mechanism for minimizing mutagenesis.  相似文献   

13.
Nucleolytic processing by nucleases can be a relevant mechanism to allow repair/restart of stalled replication forks. However, nuclease action needs to be controlled to prevent overprocessing of damaged replication forks that can be detrimental to genome stability. The checkpoint protein Rad9/53BP1 is known to limit nucleolytic degradation (resection) of DNA double‐strand breaks (DSBs) in both yeast and mammals. Here, we show that loss of the inhibition that Rad9 exerts on resection exacerbates the sensitivity to replication stress of Mec1/ATR‐defective yeast cells by exposing stalled replication forks to Dna2‐dependent degradation. This Rad9 protective function is independent of checkpoint activation and relies mainly on Rad9‐Dpb11 interaction. We propose that Rad9/53BP1 supports cell viability by protecting stalled replication forks from extensive resection when the intra‐S checkpoint is not fully functional.  相似文献   

14.
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the ‘intra-S-phase checkpoint’. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.  相似文献   

15.
The Mre11-Rad50-Nbs1 (MRN) complex is required for mediating the S-phase checkpoint following UV treatment, but the underlying mechanism is not clear. Here we demonstrate that at least two mechanisms are involved in regulating the S-phase checkpoint in an MRN-dependent manner following UV treatment. First, when replication forks are stalled, MRN is required upstream of ataxia telangiectasia mutated and Rad3-related protein (ATR) to facilitate ATR activation in a substrate and dosage-dependent manner. In particular, MRN is required for ATR-directed phosphorylation of RPA2, a critical event in mediating the S-phase checkpoint following UV treatment. Second, MRN is a downstream substrate of ATR. Nbs1 is phosphorylated by ATR at Ser-343 when replication forks are stalled, and this phosphorylation event is also important for down-regulating DNA replication following UV treatment. Moreover, we demonstrate that MRN and ATR/ATR-interacting protein (TRIP) interact with each other, and the forkhead-associated/breast cancer C-terminal domains (FHA/BRCT) of Nbs1 play a significant role in mediating this interaction. Mutations in the FHA/BRCT domains do not prevent ATR activation but specifically impair ATR-mediated Nbs1 phosphorylation at Ser-343, which results in a defect in the S-phase checkpoint. These data suggest that MRN plays critical roles both upstream and downstream of ATR to regulate the S-phase checkpoint when replication forks are stalled.  相似文献   

16.
Uncoupling between DNA polymerases and helicase activities at replication forks, induced by diverse DNA lesions or replication inhibitors, generate long stretches of primed single-stranded DNA that is implicated in activation of the S-phase checkpoint. It is currently unclear whether nucleation of the essential replication factor RPA onto this substrate stimulates the ATR-dependent checkpoint response independently of its role in DNA synthesis. Using Xenopus egg extracts to investigate the role of RPA recruitment at uncoupled forks in checkpoint activation we have surprisingly found that in conditions in which DNA synthesis occurs, RPA accumulation at forks stalled by either replication stress or UV irradiation is dispensable for Chk1 phosphorylation. In contrast, when both replication fork uncoupling and RPA hyperloading are suppressed, Chk1 phosphorylation is inhibited. Moreover, we show that extracts containing reduced levels of RPA accumulate ssDNA and induce spontaneous, caffeine-sensitive, Chk1 phosphorylation in S-phase. These results strongly suggest that disturbance of enzymatic activities of replication forks, rather than RPA hyperloading at stalled forks, is a critical determinant of ATR activation.  相似文献   

17.
18.
Göhler T  Munoz IM  Rouse J  Blow JJ 《DNA Repair》2008,7(5):775-787
Monoubiquitination of proliferating cell nuclear antigen (PCNA) enables translesion synthesis (TLS) by specialized DNA polymerases to replicate past damaged DNA. We have studied PCNA modification and chromatin recruitment of TLS polymerases in Xenopus egg extracts and mammalian cells. We show that Xenopus PCNA becomes ubiquitinated and sumoylated after replication stress induced by UV or aphidicolin. Under these conditions the TLS polymerase eta was recruited to chromatin and also became monoubiquitinated. PTIP/Swift is an adaptor protein for the ATM/ATR kinases. Immunodepletion of PTIP/Swift from Xenopus extracts prevented efficient PCNA ubiquitination and polymerase eta recruitment to chromatin during replicative stress. In addition to PCNA ubiquitination, efficient polymerase eta recruitment to chromatin also required ATR kinase activity. We also show that PTIP depletion from mammalian cells by RNAi reduced PCNA ubiquitination in response to DNA damage, and also decreased the recruitment to chromatin of polymerase eta and the recombination protein Rad51. Our results suggest that PTIP/Swift is an important new regulator of DNA damage avoidance in metazoans.  相似文献   

19.
Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.  相似文献   

20.
Liu JS  Kuo SR  Melendy T 《DNA Repair》2006,5(3):369-380
The major eukaryotic single-stranded DNA (ssDNA) binding protein, replication protein A (RPA), is a heterotrimer with subunits of 70, 32 and 14 kDa (RPA70, RPA32 and RPA14). RPA-coated ssDNA has been implicated as one of the triggers for intra-S-phase checkpoint activation. Phosphorylation of RPA occurs in cells with damaged DNA or stalled replication forks. Here we show that human RPA70 and RPA32 can be phosphorylated by purified S-phase checkpoint kinases, ATR and Chk1. While ATR phosphorylates the N-terminus of RPA70, Chk1 preferentially phosphorylates RPA's major ssDNA binding domain. Chk1 phosphorylated RPA70 shows reduced ssDNA binding activity, and binding of RPA to ssDNA blocks Chk1 phosphorylation, suggesting that Chk1 and ssDNA compete for RPA's major ssDNA binding domain. ssDNA stimulates RPA32 phosphorylation by ATR in a length dependent manner. Furthermore, 3'-, but not 5'-, recessed single strand/double strand DNA junctions produce an even stronger stimulatory effect on RPA32 phosphorylation by ATR. This stimulation occurs for both RNA and DNA recessed ends. RPA's DNA binding polarity and its interaction to 3'-primer-template junctions contribute to efficient RPA32 phosphorylation. Progression of DNA polymerase is able to block the accessibility of the 3'-recessed ends and prevent the stimulatory effects of primer-template junctions on RPA phosphorylation by ATR. We propose models for the role of RPA phosphorylation by Chk1 in S-phase checkpoint pathways, and the possible regulation of ATR activity by different nucleic acid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号