首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the interaction of adult rat hepatocytes in primary culture, to type IV collagen, fibronectin, and laminin, the major basement membrane proteins of normal rat liver. Culture substrata consisted of glass coverslips, which were covalently derivatized with individual purified basement membrane constituents at varying densities of protein. The attachment of freshly prepared hepatocytes was examined after incubation at 37 degrees C for 30 min as a function of the amount of protein on the coverslips. For each of the three types of substratum under study, distinct modes of cell attachment were observed, with the apparent affinity of hepatocytes for type IV collagen being three-fold greater than for fibronectin and ten-fold greater than for laminin. Cell attachment exhibited saturation on all substrata. Hepatocyte spreading was measured by scanning electron microscopy of cells incubated at 37 degrees for 2 h on similarly prepared coverslips. A five-fold greater surface density of type IV collagen was required for maximal spreading compared with attachment. For cells on fibronectin or laminin the maximal cell spreading reached on type IV collagen did not occur even at coverslip protein densities 10 to 20 times those providing for maximal cell attachment. A very similar qualitative pattern of cell proteins was secreted within a few hours of plating on the various substrata and further studies failed to reveal any evidence that attachment and spreading was mediated by endogenously produced matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The correlation between the extracellular deposition of fibronectin and the development of the actin-containing cytoskeleton was studied during the attachment and spreading of the rat mammary epithelial cell line Rama 25. During the initial phase of cell spreading, actin is localised in peripheral microfilament bundles. As cell spreading increases, the peripheral ring is displaced towards the perinuclear region. Fibronectin, deposited beneath the basal surface, co-localises with the actin-containing peripheral ring. The peripheral ring subsequently disappears and is replaced by a system of radial microfilaments that extend from the perinuclear region to the cell periphery. At this stage, there is no correlation between the distribution of fibronectin and actin. As cells form colonies, radial microfilament bundles are replaced by peripheral microfilament bundles which do not co-localise with fibronectin. Cells at the edges of colonies extend lamellae that contain microfilament stress fibres. In these structures there is co-localisation of actin, fibronectin and the a5 beta 1-integrin fibronectin receptor.  相似文献   

3.
The cytoskeleton and the adhesion complex of chick embryo chondrocytes maintained in vitro have been studied by fluorescence and interference reflection microscopy during the process of cell spreading. The pattern of actin-containing microfilaments and the distribution of vinculin speckles on adhesion plaques have been found to change as a function of the culture time. Newly plated chondrocytes adhere to the substratum mostly around a peripheral ring-like region and show a complex tridimensional array of microfilaments. When chondrocytes flatten, they develop stress fibres and show a diffuse system of vinculin-containing adhesion plaques scattered over the entire ventral side of the cells. Upon infection with Rous sarcoma virus (RSV) chondrocytes display one or more actin-containing ruffles located on the dorsal side similar to the 'actin flowers' earlier described in other cell types. These structures have been found to accumulate vinculin too. In chondrocytes infected with two td-ts mutants of RSV, 'actin flowers' have been found to persist at the restrictive temperature. At this temperature, however, in the majority of cells, stress fibres and adhesion plaques reappear.  相似文献   

4.
BACKGROUND: For high-resolution microscopy, cells have to be analyzed through thin glass coverslips. Therefore, it is necessary to culture cells on coverslips for preservation of cell morphology. We found cell attachment and spreading to be relatively slow processes, even when cells were plated on coated coverslips. This slowness presents a problem, particularly when synchronized cell populations are used. METHODS: In this paper, we present a method that is based on glow-discharged carbon coating of coverslips which promotes rapid attachment and spreading of cells, enabling rapid analysis of cells after plating. Results obtained with carbon-coated coverslips were compared with those of other types of coating. Two fibroblast lines, an epithelial cell line, and a carcinoma cell line were tested. RESULTS AND CONCLUSIONS: All cell lines showed a rapid adhesion on carbon-coated coverslips. With fibroblasts we found the carbon coating to be superior to other coatings tested, mainly because the carbon did not influence cell morphology. Using synchronized or irradiated cells produced similar results. The superior performance of carbon coating is probably due to carboxylic groups on the glow-discharged carbon layer. The carbon layer does not interfere with microscopy or immunocytochemical staining procedures.  相似文献   

5.
Endothelial repair to reestablish structural integrity following wounding is a complex process. Since the actin cytoskeleton undergoes specific changes in distribution as quiescent endothelial cells switch to activated migrating cells over a 6-h period following wounding (Lee et al. 1996), we studied tyrosine phosphorylation in association with actin microfilaments and adhesion proteins using double immunofluorescent confocal microscopy. We showed that in a confluent monolayer phosphotyrosine localized at the periphery of the cell at vinculin cell-cell adhesion sites within the actin-dense peripheral band (DPB) and centrally at talin/vinculin cell-substratum adhesion sites at the ends of central microfilaments. Over a period of 6 h following in vitro wounding there was a reduction of peripheral phosphotyrosine associated with the loss of both cell-cell adhesion sites and the DPB (stage I). Concomitantly, an increase in central phosphotyrosine was associated with an increase in cell-substratum adhesion sites and central microfilaments parallel to the wound edge (stage II), which subsequently redistributed perpendicular to the wound edge (stage III). We also localized FAK and paxillin at the ends of parallel and perpendicular central microfilaments. Immunoprecipitation of paxillin showed increased phosphotyrosine and protein levels when prominent central microfilaments were present and underwent remodeling. Inhibition of tyrosine kinases by genistein and tyrosine phosphatases by sodium orthovanadate resulted in reduced endothelial repair associated with disruption of adhesion site formation and central microfilament formation/redistribution in each stage of repair. We suggest that tyrosine phosphorylation of adhesion proteins, such as paxillin, may be important in regulating the early stages of endothelial wound repair. Received: 22 March 1999 / Accepted: 24 March 1999  相似文献   

6.
Electron microscopy was used to study the sites of formation of bundles of parallel microfilaments in the early stages of spreading of normal mouse embryo fibroblasts on the substrate. Bundles of microfilaments were not found in suspended cells. Contact of the surface of spherical cells with the substrate was not sufficient for the formation of bundles: these bundles were not seen near the under surface of cells that were already attached to the substrate but had not yet developed cytoplasmic outgrowths at their periphery. Peripheral cytoplasmic outgrowths (microspikes and lamellar processes) attached to the substrate were found to be the only sites of localization of the first bundles of microfilaments seen in the spreading cells. It is suggested that surface and/or cytoplasm of the newly-formed peripheral cytoplasmic outgrowth may have some special properties necessary for the initiation of the development of microfilament bundles.  相似文献   

7.
The repair of small endothelial wounds is an important process by which endothelial cells maintain endothelial integrity. An in vitro wound model system was used in which precise wounds were made in a confluent endothelial monolayer. The repair process was observed by time-lapse cinemicrophotography. Using fluorescence and immunofluorescence microscopy, the cellular morphological events were correlated with the localization and distribution of actin microfilament bundles and vinculin plaques, and centrosomes and their associated microtubules. Single to four-cell wounds underwent closure by cell spreading while wounds seven to nine cells in size closed by initially spreading which was then followed at approximately 1 h after wounding by cell migration. These two processes showed different cytoskeletal patterns. Cell spreading occurred independent of centrosome location. However, centrosome redistribution to the front of the cell occurred as the cells began to elongate and migrate. While the peripheral actin microfilament bundles (i.e., the dense peripheral band) remained intact during cell spreading, they broke down during migration and were associated with a reduction in peripheral vinculin plaque staining. Thus, the major events characterizing the closure of endothelial wounds were precise in nature, followed a specific sequence, and were associated with specific cytoskeletal patterns which most likely were important in maintaining directionality of migration and reducing the adhesion of the cells to their neighbors within the monolayer.  相似文献   

8.
We examined the distribution of fodrin and cytochrome b561 in secretion-induced rat chromaffin cells (epinephrine cells) by immunofluorescence and immunoelectron microscopy. Fasted rats injected with a large dose of insulin were perfusion-fixed and frozen sections of the adrenal medulla were immunolabeled. Fodrin, a peripheral membrane protein, was distributed only in the cell periphery in control cells, but was observed in the cell interior after the insulin treatment; many of the markers were found around small vesicles, 50-200 nm in diameter, and large vacuoles, more than 500 nm in diameter. On the other hand, cytochrome b561, an integral membrane protein, was seen only in the chromaffin granules in control cells, and appeared in small vesicles in the stimulated cells but not in large vacuoles. By double immunolabeling it was shown that cytochrome b561 coexisted with fodrin in the small vesicles. The coexistence of the two proteins was confirmed by the labeling of subcellular particles immunoadsorbed from the insulin-treated adrenal medulla homogenate; vesicles immunoisolated with anti-fodrin antibody on polyacrylamide beads were positively immunolabeled with anti-cytochrome b561 antibody. The present results show that during massive secretion fodrin is taken into the cell interior by vesicles, which may be a mechanism that retrieves the secretory granule membrane from the cell surface.  相似文献   

9.
Distinct F-actin- and myosin-containing stress fibers were observed in situ in many endoderm cells of parietal yolk sacs from 11-day mouse embryos. In visceral endoderm (VE) such fibers were not seen, and F-actin was concentrated in the cell periphery. Correspondingly, in electron microscopy ventral cell membrane-associated bundles of microfilaments were revealed in the periphery of parietal endoderm (PE) cells but not in VE cells. Both PE and VE cells formed stress fibers in primary cultures. Undifferentiated F9 embryonal carcinoma cells formed only short actin spikes and fibrils irrespective of growth substratum. In PE-like derivatives of F9 cells, on the other hand, distribution of F-actin was markedly affected by the growth substratum: They formed distinct stress fibers when plated on fibronectin but did not when plated on gelatin. Similarly, in teratocarcinoma-derived PE cells (PYS-2) adhesion to fibronectin induced the formation of distinct bundles of F-actin and plaques of vinculin. The results suggest that the susceptibility of teratocarcinoma cell actin cytoskeleton to the influence of molecular composition of surrounding matrix is developmentally regulated. On the other hand, the reason for the presence of stress fibers in PE cells and for their absence in VE cells is unclear.  相似文献   

10.
Human osteoclasts (OCLs) obtained from cell suspensions of surgically excised giant cell bone tumors (osteoclastomas) were attached to glass coverslips and analyzed by immunofluorescence with antibodies to integrins and cytoskeletal proteins. It was found that in OCLs (i) podosomes, identified by their F-actin core and by interference reflection microscopy, were predominantly found in a peripheral belt as described in avian OCLs; (ii) each F-actin core was surrounded by a ring of vinculin and talin; (iii) beta 1 integrin was diffuse in the ventral membrane; (iv) beta 3 integrin was distributed in intensely fluorescent rings surrounding F-actin cores; (v) beta 2 integrin was absent; (vi) beta 4 integrin was absent. The macrophages detected in the same coverslips displayed podosomes containing beta 2 but not beta 3, fibroblasts showed adhesion plaques positive for beta 1 and beta 3 but not for beta 2, and platelets were intensely positive for beta 3. These results indicate that OCLs produce an integrin complex that is absent in the monocyte-macrophage lineage.  相似文献   

11.
Effect of hydrocortisone on cell morphology in C6 cells   总被引:1,自引:0,他引:1  
Hydrocortisone has been found to induce cell spreading in rat glial C6 cells by 24 hours after its addition. This spreading phenomenon is correlated with an increase in the fraction of the peripheral cytoplasm occupied by microfilaments. Cytochalasin B causes disorganization of microfilaments in the peripheral cytoplasm of the cells. Additionally, it also prevents cell spreading in response to hormonal stimulation. High levels of calcium prevent recovery of normal microfilament organization and cell spreading following removal of cytochalasin B, but have no effect on normal microfilament organization alone. Additionally both the hydrocortisone induced spreading of C6 cells and increases in peripheral microfilaments are shown to be dependent on RNA ans protein synthesis. The levels of protein co-electrophoresing with actin are not effected by hydrocortisone.  相似文献   

12.
Zoospores of Phytophthora palmivora adhered to a plastic film surface were examined by electron microscopy. Three stages of adhesion were compared: (1) non-adhesive, unencysted zoospores, (2) adhered incipient cysts, and (3) adhered mature cysts. Thin sections of incipient cysts revealed cells attached to the film surface through the partially discharged contents of the so-called peripheral vesicles; this seems to be the first step in cell adhesion. In mature cysts, the adhesive appeared to have been compacted into an electron-dense deposit binding the cyst wall to the plastic surface. The adhesion zone was also examined in face view after lysing attached incipient cysts with sodium dodecyl sulphate. Cyst wall microfibrils were seen together with an amorphous substance (presumably the adhesive material). The microfibrils were in various stages of formation. Seemingly, adhesion and microfibril formation take place concurrently. The possibility was considered that the material contained in the peripheral vesicles serves in both cell adhesion and microfibril elaboration.  相似文献   

13.
Thin-section electron microscope analysis of rat and rabbit-cultured granulosa cells treated with concanavalin A (Con A) at 37 degrees C revealed coordinated changes in the cytoplasmic disposition of microfilaments, thick filaments, and microtubules during cap formation and internalization of lectin-receptor complexes. Con A-receptor clustering is accompanied by an accumulation of subplasmalemmal microfilaments which assemble into a loosely woven ring as patches of receptor move centrally on the cell surface. Periodic densities appear in the microfilament ring which becomes reduced in diameter as patches coalesce to form a single central cap. Microtubules and thick filaments emerge associated with the capped membrane. Capping is followed by endocytosis of the con A-receptor complexes. During this process, the microfilament ring is displaced basally into the cytoplasm and endocytic vesicles are transported to the paranuclear Golgi complex along microtubules and thick filaments. Eventually, these vesicles aggregate near the cell center where they are embedded in a dense meshwork of thick filaments. Freeze-fracture analysis of Con A-capped granulosa cells revealed no alteration in the arrangement of peripheral intramembrane particles but large, smooth domains were conspicuous in the capped region of the plasma membrane. The data are discussed with reference to the participation of microtubules and microfilaments in the capping process.  相似文献   

14.
With the adhesion molecules, the actin cytoskeleton controls cell-cell and cell-substrate interactions and participates in transmembrane signaling. The relationships between actin and adhesion complexes at the sites of adhesion have been well documented. Here we investigate by a series of studies whether a relationship exists between actin organization and the localization and function of the components of the cadherin-catenin complex (CCC) that participates in the cell-cell adherens junction. Reversible actin depolymerization reversibly affects the peripheral distribution of CCCs. Mutations in adenovirus E1A and the small GTPase rac1, but not Ha-ras, disrupt the circumferential, cortical actin filament (CAF) network and the targeting of CCC components to the cell surface. Disruption of actin stress fibers or microtubules does not interfere with CCC localization and function. Constitutive loss of the apical cortical actin ring results in epithelial cells in which components of the CCCs are found only in intracellular vesicles and never at the surface. A kinetic analysis of the de novo appearance of the CAF network and the CCCs at the cell surface was also conducted. When F-actin was dissolved, surface CCC components were internalized. Reestablishment of CAFs required about 4 h, during which time E-cadherin and alpha-catenin were found first in a juxtanuclear location and then in intracellular vesicles or post-Golgi carriers, similar to what was observed in cells expressing mutant E1A or rac1. Thus, disruption of preexisting CCCs resulted in their internalization and recycling to the Golgi. It was only after the regeneration of the filamentous actin ring beneath the cell surface that peripheral localization of CCCs was observed. A similar result was observed with dominant negative rac1. These data suggest that the status of cortical actin is assessed and transduced and thereby regulates the transport and delivery of cadherin and catenins to the cell surface.  相似文献   

15.
Yan M  Cheng C  Jiang J  Liu Y  Gao Y  Guo Z  Liu H  Shen A 《Neurochemical research》2009,34(5):1002-1010
Integrin-mediated substrate adhesion of endothelial cells leads to dynamic rearrangement of the actin cytoskeleton. Protein kinase C (PKC) stimulates reorganization of microfilaments and adhesion, while the responses of Schwann cells during adhesion and migration are unknown, so we examined the expression changes of SSeCKS and F-actin in Schwann cells after exposure to fibronectin. Src (sarcoma) suppressed C kinase substrate (SSeCKS) is a PKC substrate that may play an important role in regulating actin cytoskeleton. We found that SSeCKS was localized to focal adhesion sites soon after Schwann cells adhesion and that SSeCKS increased during the process of cell spreading. Using small interfering RNAs specific to SSeCKS, we showed that Schwann cells in which SSeCKS expression was inhibited reduced cellular adhesion, spreading and promoted cellular migration on fibronectin through reorganization of actin stress fibers and blocking formation of focal adhesions. These results demonstrated SSeCKS modulate Schwann cells adhesion, spreading and migration by reorganization of the actin cytoskeleton.  相似文献   

16.
Human megakaryoblastic leukemia Meg-01 cells were attached to fibronectin (FN)-coated substratum, on which remarkable spreading and cytoplasmic elongation was induced by treatment with a protein kinase inhibitor, staurosporine (stp). This effect was inhibited by RGDS and was also not seen on FN-lacking substratum. The extended cytoplasm had swollen terminals and nodes, which contained GpIIb and beta-thromboglobulin, occasionally included alpha granules, and tended to form particles (2-5 microm) after rupture of the narrowed cytoplasm. Among other protein kinase modulators tested, only K252a promoted the elongation, while calphostin, herbimycin, TPA, and calyculin suppressed it. The cells began to migrate soon after addition of stp, with attachment to the substratum held at some sites during the migration. This tethered movement seemed to cause the cytoplasmic elongation and the rupture into particles. The elongation was retarded by pretreating the cells with cytochalasin A and Clostridium C3 toxin but not with demecolcine. Actin microfilaments in the stp-treated Meg-01 cells accumulated in the filopodia and periphery of the extended cytoplasm, in which vinculin was colocalized as adhesion plaques. The microtubules were longitudinally oriented through the cytoplasmic extension and showed no ring profile in the nodes and particles. Thus, stp in the presence of FN appears to stimulate reorganization of actin-based cytoskeleton and formation of focal contacts in Meg-01 cells. This leads to the activation of cell adhesion and motility, and then cytoplasmic elongation and rupture into particles.  相似文献   

17.
Mathematical modelling of liver regeneration after intoxication with CCl(4)   总被引:7,自引:0,他引:7  
Liver regeneration is a complex process, having evolved to protect animals from the consequences of liver loss caused by food toxins. In this study, we established a mathematical spatial-temporal model of the liver lobule regenerating after CCl(4) intoxication. The aim of modelling the regeneration process by matching experimental observations with those from a mathematical model is to gain a better understanding of the process and to recognize which parameters are relevant for specific phenomena. In order to set up a realistic minimal model, we first reconstructed a schematised liver lobule after determination of: (i) the mean number of hepatocytes between the central vein and the periphery of the lobule, (ii) the mean size of the hepatocytes and (iii) the mean number of hepatocyte columns in the inner, midzonal and peripheral ring of the lobule. In a next step, we determined the time course of cell death and BrdU incorporation after intoxication of male Sprague Dawley rats with CCl(4), thereby differentiating between inner, midzonal and peripheral hepatocytes. These parameters were used to construct a model. The basic unit of this model is the individual cell. The detailed behaviour of the cells is studied, controlled by the model parameters: (1) probability of cell division at defined positions of the lobule at a given time, (2) "coordinated cell orientation", i.e., the ability of the cells to align during the regeneration process into columns towards the central vein of a liver lobule, (3) cell cycle duration, (4) the migration activity and (5) the polarity of the hepatocytes resulting in polar cell-cell adhesion between them. In a schematised lobule, the model shows that CCl(4) initially induced cell death of a pericentral ring of hepatocytes, followed by a wave of proliferation that starts in the surviving hepatocytes next to the inner ring of dead cells and continues to the peripheral hepatocytes, finally restoring the characteristic micro-architecture of the lobule in a 7-day process. This model was used to systematically analyze the influence of parameters 1-5. Interestingly, coordinated cell orientation and cell polarity were identified to be the most critical parameters. Elimination led to destruction of the characteristic micro-architecture of the lobule and to a high degree of disorder characterized by hexagonal cell structures. Our model suggests that the ability of hepatocytes to realign after cell division by a process of coordinated cell orientation (model parameter 2) in combination with cell polarity (model parameter 5) may be at least as critical as hepatocyte proliferation (model parameter 1) itself.  相似文献   

18.
As previously shown by others, the fibroblast attachment and spreading activity of fibronectin is mimicked by a short peptide (RGDS or longer) from the cell binding domain. Normal rat kidney fibroblasts showed similar attachment kinetics on either peptide GRGDSC or bovine plasma fibronectin and binding to either substratum was inhibited by peptide alone. We now demonstrate, however, considerable differences in biological activity between peptide and fibronectin. In particular, cells developed novel adhesion structures on peptide-coated substrata. Interference reflection microscopy showed a predominance of small round dark grey/black patches of adherent membrane ("spots") with relatively few focal adhesions, which occurred only at the outermost cell margins in contrast to their distribution in cells spread on fibronectin. The spots were resistant to detergent extraction and stained less strongly or not at all for vinculin. Electron microscopy in vertical thin section showed that the ventral surface of the cell was characterized by "point-contacts", corresponding in size to the spot structures seen by interference reflection microscopy, and which were only occasionally associated with microfilaments. Cells also required a higher substratum loading of peptide than fibronectin to promote spreading and proceeded to spread less rapidly and to a lesser extent, developing very few and extremely fine actin cables.  相似文献   

19.
Summary Maize root tip cells were examined for the distribution of actin microfilaments in various cell types and to determine the effects of microfilament disrupters. Fluorescence microscopy on fixed, stabilized, squashed cells using the F-actin specific probe, rhodamine-labelled phalloidin, allowed for a three-dimensional visualization of actin microfilaments. Microfilaments were observed as long, meandering structures in root cap cells and meristematic cells, while those in immature vascular parenchyma were abundant in the thin band of cytoplasm and were long and less curved. By modifying standard electron microscopic fixation procedures, microfilaments in plant cells could be easily detected in all cell types. Treatment with cytochalasin B, cytochalasin D and lead acetate, compounds that interfere with microfilament related processes, re-organized the microfilaments into abnormal crossed and highly condensed masses. All the treatments affected not only the microfilaments but also the accumulation of secretory vesicles. The vivid demonstration of the effects of all of these microfilament disrupters on the number and size of Golgi vesicles indicates that these vesicles may depend on microfilaments for intracellular movement.  相似文献   

20.
《The Journal of cell biology》1983,97(5):1452-1458
We obtained high-resolution topographical information about the distribution of clathrin and cytoskeletal filaments on cytoplasmic membrane surfaces of macrophages spreading onto glass coverslips by both critical-point drying of broken-open cells and preparation of rotary platinum replicas. Irregular patches of the adherent ventral surface of the plasma membrane were exposed in these cells, and large areas of these exposed membranes were covered with clathrin-coated patches, pits, and vesicles. Various amounts of cytoskeleton were attached to the plasma membranes of these spreading cells, either as distinct starlike foci, or as individual filaments and bundles radiating out from the cytoskeletal meshwork. In newly adherent cells a well developed Golgi-GERL complex, characterized by smooth, dish-like cisternae associated with rough endoplasmic reticulum, was observed. There were many coated vesicles budding off from the Golgi cisternae, and these were predominantly of the large type (150 nm) usually associated with the plasma membrane. In critical-point-dried samples, both cytoskeleton and membranes were preserved in detail comparable to that of quick-frozen samples, after appropriate fixation. Rotary replication of critical-point-dried cells provides a rapid, easily controlled, and generally easy to perform method for obtaining samples of exposed membrane large enough to permit quantification of membrane- associated clathrin and cytoskeleton under various experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号