首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that there is an orderly progressive increase in neurotransmitters in the brains of fetal and neonatal sheep. The pregnant ewes or newborns were killed with an intravenous overdose of pentobarbitone. Brains were removed immediately and frozen at -80 degrees C for later dissection and measurement of norepinephrine (NE), dopamine (DA), serotonin (5HT), homovanillic acid (HVA) and hydroxyindole acetic acid (HIAA). Fetuses were studied at 130-135 days gestation (term gestation 147 days), 140-145 days gestation and 1-5 days after birth. The only compound that was significantly different at the three ages was HIAA. Significant regional differences for NE, DA, and HVA, but not for 5HT were demonstrated.  相似文献   

2.
Effect of Long-Lasting Diabetes Mellitus on Rat and Human Brain Monoamines   总被引:3,自引:1,他引:2  
Experimental alloxan- or streptozotocin-produced diabetes in rats was accompanied by an increase in the levels of norepinephrine, dopamine, and serotonin, whereas the contents of metabolites, i.e., 5-hydroxyindoleacetic acid and homovanillic acid, in the whole brain gradually decreased with the duration of diabetes. Among the striatum, thalamus, and hypothalamus of alloxan diabetic rats, monoamine alterations were observed only in the hypothalamus; after 1 week an increase of norepinephrine content and after 13 weeks an increase of norepinephrine and dopamine contents were found. Tissues of 11 brain regions of 10 diabetic and 12 control patients post mortem were investigated for monoamine concentrations. Patients were all male, of similar age and interval between death and autopsy. Diabetic patients had an increase in the content of serotonin in the medial and lateral hypothalamus. The content of dopamine increased in the medial hypothalamus, putamen, and medial and lateral pallidus. In diabetic patients, the content of norepinephrine increased in the lateral pallidus and decreased in the nucleus accumbens and claustrum. Thus, it seems that diabetes mellitus in rats, as well as in humans is associated with regionally specific changes in brain monoamines.  相似文献   

3.
Levels of norepinephrine, epinephrine, dopamine, and serotonin (5-HT) and their precursors [tyrosine, L-3,4-dihydroxyphenylalanine, tryptophan, and 5-hydroxytryptophan (5-HTP)] and metabolites [3,4-dihydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT), homovanillic acid, 3-methoxy-4-hydroxyphenylglycol, and 5-hydroxyindoleacetic acid (5-HIAA)] were determined concurrently in samples of chick retina, pineal gland, and nine selected areas of the brain (optic lobes, thalamus, hypothalamus, optic chiasm, pons/medulla, cerebellum, neostriatum/ectostriatum, hyperstriatum, and basal forebrain) using HPLC coupled with a coulometric electrode array detection system. The norepinephrine level was highest in the pineal gland, but it was also widely distributed throughout the chick brain, with the thalamus and hypothalamus showing substantial levels. The dopamine level was highest in the basal forebrain. The epinephrine level was highest in the hypothalamus. The thalamus and hypothalamus showed the highest levels of 5-HT. Daytime levels (1100 h) of these compounds were compared with levels in chicks killed in the middle of the dark phase (2300 h). In the brain areas examined, no day/night variations in levels of norepinephrine, epinephrine, dopamine, or 5-HT were seen, although significant nocturnal changes in levels of their metabolites were observed in some areas. Pineal levels of 5-HIAA decreased significantly at night. The retina showed significant nocturnal increases in 5-HTP, 5-HT, and 5-HIAA levels. Retinal levels of 3-MT and DOPAC were significantly decreased at night.  相似文献   

4.
In a continuing study of nicotine-induced mechanisms in brain areas associated with cognitive processes, the effects of cholinergic and dopaminergic antagonists on nicotine-induced changes in dopamine, norepinephrine, and serotonin were examined. These effects were measured via in vivo microdialysis in the dorsal and ventral hippocampus and in the prefrontal and medial temporal cortex of conscious, freely moving, adult male rats. Nicotine (0.3 mg/kg, free base) was administered subcutaneously and the antagonists were infused locally via the microdialysis probe. Nicotine alone induced an increase of dopamine and its metabolites in all areas, an increase of norepinephrine in the cortex, and an increase of the norepinephrine metabolite 4–hydroxy-3-methoxy-phenylglycol in all areas. Serotonin was decreased in the hippocampus and increased in the cortex. Nicotine-induced dopamine increases were inhibited by nicotinic (mecamylamine 100 μM, methyllycaconitine 500 μM), muscarinic (atropine 100 μM), and dopaminergic D1 (SCH23390 100 μM) and D2 (eticlopride 100 μM) antagonists, in the hippocampal and cortical areas. In the hippocampal areas, these antagonists had less significant effect on norepinephrine and serotonin. However, in the cortical areas, all antagonists inhibited the nicotine-induced increase of serotonin to varying degrees; and some, primarily nicotinic and dopamine D1 antagonists, inhibited the induced increase of norepinephrine. In the hippocampal and cortical areas, the mechanisms of nicotine-induced dopamine increase seem to be similar, but the mechanisms seem to be different for noradrenergic and serotonergic systems, as shown by the fact that nicotine induces no change in norepinephrine and a decrease in serotonin in the hippocampus, while it induces an increase in both in the cortex. Nicotine-induced dopamine release seems to be mediated, in part locally, by nicotinic and muscarinic receptors on dopaminergic cells. In contrast, nicotine’s effect on norepinephrine and serotonin is at least partially mediated by initial changes at other than local sites, and through different receptors. Thus, the effects of nicotine and the mechanisms involved differ for different neurotransmitters and in different brain areas.  相似文献   

5.
Functional and behavioral disturbances associated with hydrocephalus may be due in part to altered neurotransmitter function in the brain. Hydrocephalus was induced in adult rabbits by injection of silicone oil into the cisterna magna. These and controls were killed 3 days, 1 and 4 weeks post-injection. Tissue concentrations of norepinephrine, epinephrine, serotonin, dopamine, and the metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were determined in fifteen brain regions using HPLC. There were decreases in hypothalamic and medullary dopamine, transient decreases in basal ganglia serotonin, increases in thalamic noradrenaline, and increases in hypothalamic and thalamic epinephrine. Changes in the primary neurotransmitters may be attributable to damage of their axonal projection systems. Metabolite concentrations increased in the cerebrum. Reduced clearance of extracellular fluid which accompanies cerebrospinal fluid stasis may explain the accumulation of metabolites.  相似文献   

6.
G E Richards  J Z Kendal 《Life sciences》1987,40(20):2001-2005
To investigate the neurochemical mechanism of the response of growth hormone to 5-hydroxytryptophan (5-HTP), we administered 5-HTP (20 mg/kg) to 10 ovine fetuses (110 or 130 days old; term gestation 147 days). Ninety minutes after 5-HTP administration, and following increases in plasma growth hormone concentrations, the fetus was delivered by hysterotomy. After local anesthesia of the fetus and sacrifice by cervical spinal cord transection the hypothalamus rapidly dissected, and stored at -80 degrees C for later analysis of norepinephrine, dopamine, serotonin and hydroxyindole acetic acid. Compared to the administration of saline, 5-HTP caused a significant increase in the hypothalamic content of serotonin, and norepinephrine, at both gestational ages. 5-hydroxyindole acetic acid increased significantly only in the older fetuses. These results indicate that serotonin may not be the only neurotransmitter active in the growth hormone response to 5-HTP.  相似文献   

7.
SYNOPSIS. In the dwarf Siberian hamster, Phodopus sungorus,the photoperiodic response can be modified by numerous environmentalstimuli, including social interactions, dietary, and climaticchanges. Photoperiodic information is processed in both themedial basal hypothalamus and the preoptic area. Transfer ofanimals from a long summer photoperiod to a short winter photoperiodresults in decreases in the concentration of both norepinephrineand dopamine in both of these brain areas. Results from thesestudies indicate that both dietary supplements and social interactionscan override the effects of day length on changes in brain neurotransmitters.Specifically, social interactions can override the decreasesin norepinephrine and dopamine in the medial basal hypothalamusbut not the preoptic area. Conversely, dietary manipulationsoverride the decreases in the preoptic area but not in the medialbasal hypothalamus. These results suggest that photoperiod isa general stimulus that depresses neurotransmitter activityin multiple brain areas including the medial basal hypothalamus,and preoptic area. Fine tuning information, such as dietaryand social cues, is then processed in very specific areas ofthe brain and can override the photoperiod induced changes inthese specific areas  相似文献   

8.
The monoamines dopamine, norepinephrine, epinephrine, and serotonin and their major metabolites 3,4-dihydroxyphenylacetic acid, homovanillic acid, 3-methoxy-4-hydroxyphenylethylene glycol, and 5-hydroxyindoleacetic acid were measured in the CNS of the rat during development from fetal day 18 to young adult. The catecholamines, serotonin, and their major metabolites remained low during fetal life. Concentrations measured in total brain started to increase around birth till the end of the fourth week of life after which steady-state levels were measured. Our results suggest that although monoamine systems are already morphologically well developed during late gestational life, they probably become a significant functional system only around birth and early postnatal life.  相似文献   

9.
Daily administration of triiodothyronine (10 μg/100 g) to newborn rats for 30 days produced signs of hyperthyroidism which included accelerated development of physical and behavioural characteristics accompanying maturation. The hyperthyroid rats displayed progressive increases in spontaneous locomotor activity between 14–35 days, which remained elevated well above control levels even at 105 days. Exposure of developing rats to triiodothyronine increased the endogenous levels of striatal tyrosine and tyrosine hydroxylase as well as the concentration of dopamine in hypothalamus, pons-medulla, mid-brain, striatum and hippocampus. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid was also increased in hyperthyroid rats. In contrast, the steady-state levels of norepinephrine remained unaltered resulting in a significant increase in dopamine to norepinephrine ratio in several regions of the brain examined. The elevated levels of dopamine metabolites (homovanillic acid and 3,4-dihydroxyphenylacetic acid) may be due to an increased turnover of dopamine. Our data suggest that increased thyroid hormone levels may lead to an enhanced synthesis as well as utilization of brain catecholamines which in turn may underlie the observed increases in spontaneous locomotor activity.  相似文献   

10.
Abstract: Changes in the tissue levels of 3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and dopamine in the frontal cortex, hypothalamus, nucleus accumbens, and striatum were evaluated after 0.5-4 h of footshock (2 mA, for 3 s every 30 ± 5 s) in Fischer rats. 3-MT, DOPAC, and HVA levels in the four brain areas peaked at 0.5 h and in most cases returned to baseline values within 4 h. No changes were found in dopamine levels. Repeated footshock stress was evaluated by administering 10 footshock sessions (0.5 h, two per day for 5 days). At the end of the 10th footshock session, 3-MT levels were higher than at the end of the first footshock session in three of the four brain regions, indicating sensitization of dopamine release. No differences were found between the first and 10th footshock sessions in DOPAC and HVA levels. Fourteen days after the 10th footshock session, the levels of 3-MT, DOPAC, and HVA were the same as in control rats in all four brain regions. A 0.5-h footshock challenge presented 14 days after the 10th footshock session attenuated DOPAC levels in the hypothalamus and nucleus accumbens. In contrast, DOPAC and HVA levels in the frontal cortex showed sensitization after footshock challenge, and a similar trend was apparent for 3-MT levels. These results indicate that repeated footshock stress induces generalized sensitization of dopamine release and turnover in some areas of the brain of Fischer rats. This sensitization may persist in the cortical but not subcortical dopamine neurons after discontinuation of the treatment.  相似文献   

11.
Abstract: The effects on brain neurochemistry of two neurotoxic tin compounds, trimethyltin (TMT) hydroxide and triethyltin (TET) sulfate, were examined. Long-Evans rats were treated with TMT hydroxide (1 mg/kg, i.p.) on alternate days from day 2 to 29 of life. These treatments caused a weight deficit of 10–20% by the time the animals were killed on day 55 by head-focused microwave irradiation. These TMT treatments are known to cause severe neuronal loss in the hippocampus and lesser damage in other brain regions. Accordingly, the concentration of γ-aminobutyric acid (GABA) was decreased in the hippocampus; however, acetylcholine and choline concentrations were unaffected. These data suggest that TMT-induced effects on GABA systems are greater than that due simply to generalized neuronal loss. The TMT treatments also caused a significant decrease in dopamine concentrations in the striatum, but did not alter the concentrations of dihydroxyphenylacetic acid or homovanillic acid, the acidic metabolites of dopamine. Conversely, concentrations of dopamine and norepinephrine in the brain stem and norepinephrine in the cerebellum were not altered. Despite reports in the literature of TMT-induced neuronal damage in areas of the cortex, no effects on GABA, acetylcholine, or choline levels were found in the cortical areas examined, or in the hypothalamus. TET sulfate (0.3 mg/kg/day) was administered for 6 consecutive days of every week during days 2–29 of life. This dose is lower than that needed to cause intramyelin edema, yet it does result in long-term behavioral changes. Despite this, no changes in the concentration of any of the measured neurotransmitters or their metabolites were detected. In concert, these data demonstrate that neurochemical methods should not be used as neurological “screens,” but rather to define specific mechanisms suggested by detailed behavior, pharmacological, and/or physiological studies.  相似文献   

12.
To date, UCM707, (5Z,8Z,11Z,14Z)-N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide, has the highest potency and selectivity in vitro and in vivo as inhibitor of the endocannabinoid uptake. Its biochemical, pharmacological and therapeutic properties have been intensely studied recently, but the information on its capability to modify neurotransmitter activity, which obviously underlies the above properties, is still limited. In the present study, we conducted a time-course experiment in rats aimed at examining the neurochemical effects of UCM707 in several brain regions following a subchronic administration (5 injections during 2.5 days) of this inhibitor in a dose of 5 mg/kg weight. In the hypothalamus, the administration of UCM707 did not modify GABA contents but reduced norepinephrine levels at 5 h after administration, followed by an increase at 12 h. Similar trends were observed for dopamine, whereas serotonin content remained elevated at 1 and, in particular, 5 and 12 h after administration. In the case of the basal ganglia, UCM707 reduced GABA content in the substantia nigra but only at longer (5 or 12 h) times after administration. There were no changes in serotonin content, but a marked reduction in its metabolite 5HIAA was recorded in the substantia nigra. The same pattern was found for dopamine, contents of which were not altered by UCM707 in the caudate-putamen, but its major metabolite DOPAC exhibited a marked decrease at 5 h. In the cerebellum, UCM707 reduced GABA, serotonin and norepinephrine content, but only the reduction found for norepinephrine at 5 h reached statistical significance. The administration of UCM707 did not modify the contents of these neurotransmitters in the hippocampus and the frontal cortex. Lastly, in the case of limbic structures, the administration of UCM707 markedly reduced dopamine content in the nucleus accumbens at 5 h, whereas GABA content remained unchanged in this structure and also in the ventral-tegmental area and the amygdala. By contrast, norepinephrine and serotonin content increased at 5 h in the nucleus accumbens, but not in the other two limbic structures. In summary, UCM707 administered subchronically modified the contents of serotonin, GABA, dopamine and/or norepinephrine with a pattern strongly different in each brain region. So, changes in GABA transmission (decrease) were restricted to the substantia nigra, but did not appear in other regions, whereas dopamine transmission was also altered in the caudate-putamen and the nucleus accumbens. By contrast, norepinephrine and serotonin were altered by UCM707 in the hypothalamus, cerebellum (only norepinephrine), and nucleus accumbens, exhibiting biphasic effects in some cases.  相似文献   

13.
Aluminum, a known neurotoxic substance, has been suggested as a possible contributing factor in the pathogenesis of Alzheimer's disease. Ground-water pollution by aluminum has been recently reported. In the current study groups of 5 male BALB/c mice were administered aluminum ammonium sulfate in drinking water ad libitum at 0, 5, 25, and 125 mg/L aluminum for 4 weeks. At the termination of aluminum exposure, their brains were removed and dissected into cerebrum, cerebellum, medulla oblongata, midbrain, corpus striatum, and hypothalamus. The concentration of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), were determined in each brain area. DA, DOPAC, and HVA levels were lower in the hypothalamus of aluminum-treated mice, most notably in the low-dose group, as compared with control. No marked alterations in NE, 5-HT, and 5-HIAA levels were detected in any brain region. Changes in the concentration of DA and its metabolites measured in the hypothalamus suggest an inhibition of DA synthesis by aluminum.  相似文献   

14.
Effect of aging on monoamines and their metabolites in the rat brain   总被引:3,自引:0,他引:3  
Concentrations of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their acid merabolites were assayed in specific brain areas of Wistar rats of various ages. DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) were significantly lower in striatum and mesolimbic areas of old (24 mos) rats than young adult (3 mos), but not mature (12 mos) rats. The decrease of homovanillic acid (HVA) was significant in mesolimbic areas but not in striatum. Neither cortical NE nor its metabolite methoxydroxyphenylglycol sulphate (MHPG-SO4) were significantly changed by aging. 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the brainstem showed a tendency to a decrease and increase respectively in aged animals compared with young adults, but the differences were not statistically significant. However, the ratio of 5-HIAA to 5-HT concentrations was significantly higher in aged animals. The conclusion can be drawn that, in these brain areas, DA is more vulnerable to aging than NE and 5-HT, the metabolism of the latter being even enhanced.  相似文献   

15.
1. Monoamines (which all demand oxygen for their synthesis) and monoamine metabolites were quantified in 6 brain regions of the extremely anoxia tolerant crucian carp (Carassius carassius L.).2. The norepinephrine levels were generally twice as high as the dopamine levels. No epinephrine was found.3. The major dopamine metabolite seemed to be homovanillic acid. No 3,4-dihydroxyphenylacetic acid was found.4. Serotonin occurred at about the same levels as dopamine. The levels of the main serotonin metabolite, 5-hydroxyindole-3-acetic acid, were about 10% of that of serotonin.5. All three monoamines had a similar distribution, with the highest concentrations in hypothalamus and the lowest in cerebellum and vagal lobes.6. The distribution and levels of monoamines agreed with that of anamniote vertebrates in general, suggesting that the crucian carp has not adapted to anoxia by abandoning or minimizing the use of monoaminergic systems.  相似文献   

16.
Glucagon-like peptide 1 (7-36) amide (GLP-1) and exendin-4 are gastrointestinal hormones as well as neuropeptides involved in glucose homeostasis and feeding regulation, both peripherally and at the central nervous system (CNS), acting through the same GLP-1 receptor. Aminergic neurotransmitters play a role in the modulation of feeding in the hypothalamus and we have previously found that peripheral hormones and neuropeptides, which are known to modulate feeding in the central nervous system, are able to modify catecholamine and serotonin release in the hypothalamus. In the present paper we have evaluated the effects of GLP-1 and exendin-4 on dopamine, norepinephrine, and serotonin release from rat hypothalamic synaptosomes, in vitro. We found that glucagon-like peptide 1 (7-36) amide and exendin-4 did not modify either basal or depolarization-induced dopamine and norepinephrine release; on the other hand glucagon-like peptide 1 (7-36) amide and exendin-4 stimulated serotonin release, in a dose dependent manner. We can conclude that the central anorectic effects of GLP-1 agonists could be partially mediated by increased serotonin release in the hypothalamus, leaving the catecholamine release unaffected.  相似文献   

17.
The influence of nephrectomy on brain and peripheral tissue histamine and on brain norepinephrine, dopamine, serotonin, and 5-hydroxyindoleacetic acid was studied in germ-free and conventionally housed rats. The conventional controls had higher levels of histamine in the hypothalamus than the germ-free control animals, but no differences existed for histamine in whole brain minus the hypothalamus or in peripheral tissues. Nephrectomy increased brain histamine and 5-hydroxyindoleacetic acid levels in both germ-free and conventional rats, but had no effect on norepinephrine, dopamine or serotonin. In contrast, the histamine level in the heart of the nephrectomized germ-free animals was lower than that for germ-free controls. There were no changes in the heart or liver histamine levels of the conventional nephrectomized rats.  相似文献   

18.
Abstract: HPLC determination of histamine, serotonin, dopamine, and noradrenaline in the brain tissue of rats with portocaval anastomoses (PCA) has revealed a selective increase in histamine concentration. In the posterior hypothalamus, the steady-state level of the amine metabolites showed an inverse pattern; N-tele -methylhistamine(t-MeHA), as estimated by gas chromatography-mass spectrometry, was not changed significantly by portocaval shunting, whereas 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid were more than doubled. Interestingly, the net increase in t-MeHA concentration in response to pargyline (80 mg/kg i.p.) was almost the same for PCA and sham-operated rats. This implies that the great enhancement of the histamine level in this area might be a consequence of the persistent stimulation of its synthesis and the unchanged activity of histaminergic neurons. In the rest of the brain, on the other hand, the steady-state level of t-MeHA was higher after PCA (3.8-fold), as were the levels of 5-HIAA and homovanillic acid. Surprisingly, t-MeHA remained unchanged after monoamine oxidase blockade. Of the pargyline-induced alterations in the concentrations of indoles and catechols, the most pronounced were those in the serotonin level; serotonin was elevated more than twofold in hypothalamus and more than 12-fold in the rest of the brain, with a concomitant 80% decrease in 5-HIAA. The dopamine and, to a much smaller extent, noradrenaline levels were also increased, and the levels of homovanillic acid and 3,4-dihydroxyphenylacetic acid fell below the detection limit. The study suggests that at least two different mechanisms operate in the brains of PCA rats to counteract the excessive synthesis of neuromediators, e.g., increased deposition and increased metabolism.  相似文献   

19.
The influence of chronic stress (footshock combined with randomized light flashes) on acute stress-induced (immobilization) release of noradrenaline, dopamine and serotonin in rat lateral hypothalamus was assessed by microdialysis. The chronic stress resulted in an increase and prolongation of the acute stress-induced release of noradrenaline but not of dopamine and serotonin. The increased rate of accumulation of dioxyphenylacetic acid and unchanged accumulation of homovanillic acid (dopamine metabolites) and dopamine during and after the acute stress in chronically stressed animals reflect a rise of synthetic activity of catecholaminergic systems in response to acute stress and reuptake increase. Marked stress-induced increase in hydroxyindoleacetic acid in chronically stressed rats without any changes in the ST dynamics may be regarded in a similar way. A significant increase in potassium-stimulated release of all the studied monoamines was found while their basal level remained unchanged. The conclusions was made that the hyperergic release of neurotransmitters may be the basis of an inadequate response of animals to acute stress, i.e., one of the neurotic symptoms.  相似文献   

20.
Deprenyl is a selective monoamine oxidase B (MAO-B) inhibitor and has been used in the treatment of Parkinson's disease. However, it is not known whether deprenyl effects are symptomatic or pharmacological. Aging mice were partially lesioned with MPTP. Control and MPTP-treated mice were given deprenyl in drinking water for 14 days. Brain tissue (including the striatum, olfactory tubercle and cerebral cortex) was assayed for MAO-B and neurotransmitter levels. The results show that deprenyl treatment, given alone or after MPTP, reduced MAO-B activity in all the three regions. No change was seen in dopamine (DA), 3,4-dihydroxyphenyl acetic acid (DO-PAC), and homovanillic acid (HVA) content in any of the three areas. Cortical norepinephrine (NE) levels were also unaltered. However, striatal serotonin (5-HT) levels were decreased while its metabolite, 5-HIAA levels were significantly increased in the olfactory tubercle in animals receiving deprenyl alone. These data suggest that deprenyl treatment reduces MAO-B activity in regions in addition to the striatum without affecting norepinephrine, dopamine (DA) and its metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号