首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A detailed quantitative analysis of the anisotropic properties of Sirius Red F3B, Picrosirius, and Chlorantine Fast Red crystals, and of their complexes with a macromolecularly oriented protein either in a pure form or as part of a tissue structure was carried out. Collagen I was used as the protein model. Linear dichroism and dispersion of birefringence were investigated in dye aggregates, in stained filaments of collagen I and in collagen bundles in sections of tendon. A positive linear dichroism, the characteristics of which varied as a function of the dye type used, was demonstrated for the dye aggregates and stained substrates. However, even thin regions of the stained tendon collagen bundles showed very high absorbances, differing from the pattern reported previously, for collagen stained with another sulphonated azo dye, Xylidine Ponceau. Consequently, not all these dyes enable protein concentration and orientation to be determined in collagen-containing structures. From the linear dichroism patterns it is assumed that the long axis of the molecules of these azo dye is mostly parallel to that of filaments of pure collagen I and statistically parallel to the long axis of collagen bundles of tendon sections. The dye aggregates and, stained pure collagen I and tendon collagen bundles exhibited birefringent images with interference colours that varied as a function of thickness and packing state of the preparations, which is in agreement with reports in the literature. The optical retardations of the collagen bundles increased by a factor of 5–6 times after staining with Picrosirius. From data on form dichroism it is concluded that when studying the macromolecular orientation of collagen preparations stained with azo dyes, the choice of the mounting medium deserves consideration.  相似文献   

2.
The aim of this work was to define the chemical structure of compounds self-assembling in water solutions, which appear to interact with proteins as single ligands with their supramolecular nature preserved. For this purpose the ligation to proteins of his azo dyes, represented by Congo red and its derivatives with designed structural alterations, were tested. The three parameters which characterize the reactivity of supramolecular material were determined in the same conditions for all studied dyes. These were: A) stability of the assembly products; B) binding to heat-denatured protein (human IgG); and C) binding to native protein (rabbit antibodies in the immune complex) measured by the enhancement of hemagglutination. The structural differences between the Congo red derivatives concerned the symmetry of the molecule and the structure of its non-polar component, which occupies the central part of the dye molecule and is thought to be crucial for self-assembly. Other dyes were also studied for the same purpose: Evans blue and Trypan blue, bis-ANS and ANS, as well as a group of compounds with a structural design unlike that of bis azo dyes. Compounds with rigid elongated symmetric molecules with a large non-polar middle fragment are expected to form a ribbon-like supramolecular organization in assembling. They appeared to have ligation properties related to their self-assembling tendency. The compounds with different structures, not corresponding to his azo dyes, did not reveal ligation capability, at least in respect to native protein. The conditions of binding to denatured proteins seem less restrictive than the conditions of binding to native molecules. The molten hydrophobic protein interior becomes a new binding area allowing for complexation of even non-assembled molecules.  相似文献   

3.
Previous studies of picro-dye reactions demonstrated wide variations in the binding of different dyes. Picro-Sirius Red F3BA was recommended because it colors all collagens intensely and is suitable for polarization microscopy. Recent publications on quantitative uses of this stain were surprising. To obtain further information on the chemical mechanisms of dye binding by proteins, 94 sulfonated azo dyes were tested under the conditions of the picro-Sirius Red F3BA reaction. Reaction patterns varied widely, from failure to compete successfully with picrate ions for binding sites to strong coloration of all tissue structures. Only a few dyes stained collagen, reticulum fibers and basement membranes intensely and selectively. The reactivity of dyes was determined by their molecular configuration and the nature and position of substituents. Correlation with physico-chemical data showed that dye binding is due to non-ionic interactions, i.e. van der Waals and dispersion forces and hydrophobic bonding. Coulomb forces do not impart affinity - increasing sulfonation actually decreases dye uptake - but draw dyes within reach of non-ionic sites. Bound dyes form aggregates with additional dye ions; the aggregation number can range from 2 to many powers of 10. Clearly, dye binding by proteins is not stoichiometric.  相似文献   

4.
Summary Previous studies of picro-dye reactions demonstrated wide variations in the binding of different dyes. Picro-Sirius Red F3BA was recommended because it colors all collagens intensely and is suitable for polarization microscopy. Recent publications on quantitative uses of this stain were surprising. To obtain further information on the chemical mechanisms of dye binding by proteins, 94 sulfonated azo dyes were tested under the conditions of the picro-Sirius Red F3BA reaction.Reaction patterns varied widely, from failure to compete successfully with picrate ions for binding sites to strong coloration of all tissue structures. Only a few dyes stained collagen, reticulum fibers and basement membranes intensely and selectively.The reactivity of dyes was determined by their molecular configuration and the nature and position of substituents. Correlation with physico-chemical data showed that dye binding is due to non-ionic interactions, i.e. van der Waals and dispersion forces and hydrophobic bonding. Coulomb forces do not impart affinity-increasing sulfonation actually decreases dye uptake — but draw dyes within reach of non-ionic sites. Bound dyes form aggregates with additional dye ions; the aggregation number can range from 2 to many powers of 10. Clearly, dye binding by proteins is not stoichiometric.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

5.
Non-covalent interactions between polymethine dyes of various types (cationic and anionic thiacarbocyanines as well as anionic oxonols and tetracyanopolymethines) and human serum albumin (HSA) were studied by means of absorption, fluorescence and circular dichroism (CD) spectroscopies. Complexation with the protein leads to a red shift of the dye absorption spectra and, in most cases, to a growth of the fluorescence quantum yield (Phif; for oxonols this growth is very small). The binding constants (K) obtained from changing the absorption spectra and Phif vary from 10(4) to (5-6) x 10(7) M(-1). K for the anionic dyes is much higher than for the cationic dyes (the highest K was found for oxonols). Interaction of meso-substituted anionic thiacarbocyanines with HSA results in cis-->trans isomerization and, as a consequence, an appearance and a steep rise of dye fluorescence. Binding to HSA gives rise to dye CD signals and in many cases is accompanied by aggregation of the dyes. These aggregates often exhibit biphasic CD spectra. The aggregates formed by the dyes alone are decomposed in the presence of HSA.  相似文献   

6.
Mixed anaerobic bacterial consortia have been show to reduce azo dyes and batch decolourisation tests have also demonstrated that predominantly methanogenic cultures also perform azo bond cleavage. The anaerobic treatment of wool dyeing effluents, which contain acetic acid, could thus be improved with a better knowledge of methanogenic dye degradation. Therefore, the decolourisation of two azo textile dyes, a monoazo dye (Acid Orange 7, AO7) and a diazo dye (Direct Red 254, DR254), was investigated in a methanogenic laboratory-scale Upflow Anaerobic Sludge Blanket (UASB), fed with acetate as primary carbon source. As dye concentration was increased a decrease in total COD removal was observed, but the acetate load removal (90%) remained almost constant. A colour removal level higher than 88% was achieved for both dyes at a HRT of 24h. The identification by HPLC analysis of sulfanilic acid, a dye reduction metabolite, in the treated effluent, confirmed that the decolourisation process was due mainly to azo bond reduction. Although, HPLC chromatograms showed that 1-amino-2-naphthol, the other AO7 cleavage metabolite, was removed, aeration batch assays demonstrated that this could be due to auto-oxidation and not biological mineralization. At a HRT of 8h, a more extensive reductive biotransformation was observed for DR254 (82%) than for AO7 (56%). In order to explain this behaviour, the influence of the dye aggregation process and chemical structure of the dye molecules are discussed in the present work.  相似文献   

7.
Vidal BC  Mello ML 《Biopolymers》2005,78(3):121-128
The optical anisotropies (linear dichroism or LD and birefringence) of crystalline aggregates of the sulfonic azo-dye Ponceau SS and of dye complexed with chicken tendon collagen fibers were investigated in order to assess their polarizing properties and similarity to liquid crystals. In some experiments, the staining was preceded by treatment with picric acid. Crystalline fibrous aggregates of the dye had a negative LD, and their electronic transitions were oriented perpendicular to the filamentary structures. The binding of Ponceau SS molecules to the collagen fibers altered the LD signal, with variations in the fiber orientation affecting the resulting dichroic ratios. The long axis of the rod-like dye molecule was assumed to be bound in register, parallel to the collagen fiber. Picric acid did not affect the oriented binding of the azo dye to collagen fibers. There were differences in the optical anisotropy of Ponceau SS-stained tendons from 21-day-old and 41-day-old chickens, indicating that Ponceau SS was able to distinguish between different ordered states of macromolecular aggregation in chicken tendon collagen fibers. In the presence of dichroic rod-like azo-dye molecules such as Ponceau SS, collagen also formed structures with a much higher degree of orientation. The presence of LD in the Ponceau SS-collagen complex even in unpolarized light indicated that this complex can act as a polarizer.  相似文献   

8.
Microbial decolorization and degradation of synthetic dyes: a review   总被引:3,自引:0,他引:3  
The synthesis of dyes and pigments used in textiles and other industries generate the hazardous wastes. A dye is used to impart color to materials of which it becomes an integral part. The waste generated during the process and operation of the dyes commonly found to contain the inorganic and organic contaminant leading to the hazard to ecosystem and biodiversity causing impact on the environment. The amount of azo dyes concentration present in wastewater varied from lower to higher concentration that lead to color dye effluent causing toxicity to biological ecosystem. The physico-chemical treatment does not remove the color and dye compound concentration. The decolorization of the dye takes place either by adsorption on the microbial biomass or biodegradation by the cells. Bioremediation takes place by anaerobic and/or aerobic process. The anaerobic process converts dye in toxic amino compounds which on further treatment with aerobic reaction convert the intermediate into CO2 biomass and inorganics. In the present review the decolorization and degradation of azo dyes by fungi, algae, yeast and bacteria have been cited along with the anaerobic to aerobic treatment processes. The factors affecting decolorization and biodegradation of azo dye compounds such as pH, temperature, dye concentration, effects of CO2 and Nitrogen, agitation, effect of dye structure, electron donor and enzymes involved in microbial decolorization of azo dyes have been discussed. This paper will have the application for the decolorization and degradation of azo dye compound into environmental friendly compounds.  相似文献   

9.
The self-assembling tendency and protein complexation capability of dyes related to Congo red and also some dyes of different structure were compared to explain the mechanism of Congo red binding and the reason for its specific affinity for beta-structure. Complexation with proteins was measured directly and expressed as the number of dye molecules bound to heat-aggregated IgG and to two light chains with different structural stability. Binding of dyes to rabbit antibodies was measured indirectly as the enhancement effect of the dye on immune complex formation. Self-assembling was tested using dynamic light scattering to measure the size of the supramolecular assemblies. In general the results show that the supramolecular form of a dye is the main factor determining its complexation capability. Dyes that in their compact supramolecular organization are ribbon-shaped may adhere to polypeptides of beta-conformation due to the architectural compatibility in this unique structural form. The optimal fit in complexation seems to depend on two contradictory factors involving, on the one hand, the compactness of the non-covalently stabilized supramolecular ligand, and the dynamic character producing its plasticity on the other. As a result, the highest protein binding capability is shown by dyes with a moderate self-assembling tendency, while those arranging into either very rigid or very unstable supramolecular entities are less able to bind.  相似文献   

10.
Noncovalent interaction of intraionic squarylium dyes, derivatives of 3H-indolium, as well as the structurally analogous ionic indodicarbocyanine dye with serum albumins (human, bovine, rat) and, for comparison, with ovalbumin has been studied by spectral and fluorescent methods. The hydrophilic squarylium dye with sulfonate groups was found to interact with albumins more efficiently, which is probably due to the double negative charge on the dye molecule at the expense of the sulfonate groups and the ability to form hydrogen bonds with albumin. The hydrophilic indodicarbocyanine dye without the squarylium group in its structure binds to albumins much weaker than the structurally analogous squarylium dye. The dyes bind to ovalbumin less efficiently than to serum albumins. Along with the binding of monomeric dye molecules, the aggregation of the dyes on albumins is also observed. The hydrophobic squarylium dye without sulfonate groups tends to form aggregates in aqueous solutions, which partially decompose upon the introduction of albumin into the solution. The hydrophilic squarylium dye with sulfonate groups can be recommended for tests as a spectral-fluorescent probe for serum albumins in extracellular media of living organisms.  相似文献   

11.
Textile industry uses azo dyes in its processes, which are complex organic molecules that are not easy to be degraded. Reactive dyes are especially difficult to remove from wastewater because of the characteristics of the molecule: one or more azo bonds, naphthalene‐disulfonate, triazine or chloro‐triazine, and phenyl‐amine groups. The degradation of the azo dye reactive red 272 was studied under anaerobic conditions in a hybrid Upflow Anaerobic Sludge Bed reactor (UASB) with an activated carbon bed. An adapted consortium of microorganisms was used in the kinetic study (batch) and to inoculate the UASB reactor. The experimental design identified the main factors determining the dye reduction efficiency are the initial concentration of dye and dextrose (as electron donor) and the residence time in the reactor. Dye reduction rate was decreased as the concentration increases in the wastewater; as a result, a kinetic model with a change from first to second order is proposed. The kinetic study showed that the process is first abiotic (adsorption) and then biotic (biodegradation).  相似文献   

12.
Dye-ligand affinity systems.   总被引:5,自引:0,他引:5  
Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.  相似文献   

13.
氧气对混合菌群脱色降解偶氮染料效果的影响   总被引:1,自引:1,他引:0  
【背景】偶氮染料及其中间产物具有一定的环境毒性,利用混合菌群降解偶氮染料是一种环境友好型方法,但降解过程中氧气的存在起到至关重要的作用,可以促进或抑制偶氮染料的微生物降解作用。【目的】探讨氧气对偶氮染料微生物脱色液的影响,分析氧气对混合菌群脱色降解偶氮染料效果的影响。【方法】利用混合菌群DDMY1在3种培养条件(好氧、厌氧、兼氧)下,对7种偶氮染料进行脱色降解,探讨偶氮染料脱色液对氧气的响应情况,利用紫外可见分光光度法(ultraviolet visible spectrophotometry,UV-vis)和傅里叶变换红外光谱法(Fourier transform infrared spectroscopy,FTIR)对脱色产物进行分析。【结果】在兼氧和厌氧条件下反应48 h后的染料脱色液,与氧气充分接触后,部分偶氮染料微生物脱色液发生较为明显的复色现象,如活性黑5、直接黑38;UV-vis分析结果表明,这种复色现象是由于脱色液与氧气接触之后产生新物质所致;FTIR分析结果表明,混合菌群对发生复色反应的偶氮染料仍然具有一定脱色降解效果,但是脱色尚不够完全。【结论】兼氧和厌氧条件下,氧气对部分偶氮染料微生物脱色液具有较为明显的影响,从而影响混合菌群对偶氮染料的整体脱色效果,这可为今后研究偶氮染料彻底生物降解提供理论基础。  相似文献   

14.
alpha-Synuclein has been implicated in various neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, by its participation in abnormal protein depositions. As the protein has been suggested to play a significant role in the formation of the deposits which might be responsible for neurodegeneration, there is a strong demand to screen for alpha-synuclein-interactive small molecules. In this report, Coomassie Brilliant Blue (CBB) interaction of alpha-synuclein has been investigated with respect to induction of protein self-oligomerization in the presence of the chemical coupling reagent N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline. Both CBB-G and CBB-R, which differ by only two methyl groups, induced the self-oligomerization of alpha-synuclein in a biphasic manner with optimal dye concentrations of 250 microM and 150 microM, respectively. The protein aggregates of alpha-synuclein induced by the dyes in the absence of the coupling reagent were analysed by electron microscopy. Whereas CBB-G induced formation of protein aggregates with a worm-like structure, CBB-R induced clear fibrilization of alpha-synuclein on a background of granular structures. CBB-R interacted with alpha-synuclein approximately twice as effectively as CBB-G (dissociation constants 0.63 microM and 1.37 microM, respectively). These dye interactions were independent from the acidic C-terminus of alpha-synuclein, which was reminiscent of the Alphabeta25-35 interaction of alpha-synuclein. However, the metal-catalysed oxidative self-oligomerization of alpha-synuclein in the presence of Cu2+/H2O2, which was augmented synergistically by Alphabeta25-35, was not affected by the dyes. This indicates that the dye binding site is also distinctive from the Alphabeta25-35 interaction site on alpha-synuclein. These biochemically specific interactions between alpha-synuclein and the dyes indicate that alpha-synuclein-interactive small molecules could provide a tool with which to approach development of diagnostic, preventive, or therapeutic strategies for various alpha-synuclein-related neurodegenerative disorders.  相似文献   

15.
Azo dyes are widely used in dye manufacturing, paper printing, textile industries, and as tattoo pigmentation. Since intestinal and skin bacteria can metabolize certain azo dyes to carcinogenic compounds, many researchers have studied the azoreductases of these bacteria. In this study, we used a microarray method to identify the intestinal bacterial species from cultured fecal samples in Brain Heart Infusion (BHI) broth with or without azo dyes that may be involved in azo dye reduction. The microarray was designed to identify 40 bacterial species that are reported in the literature to be predominant in human feces. Results from this study showed 26-30 species are present in the cultured fecal samples. The representative bacteria were then examined for the azo dye reduction activity.  相似文献   

16.
Heat aggregation of human IgG has been studied by photon correlation spectroscopy, ultracentrifugation, circular dichroism, and differential scanning calorimetry. It is found that pooled human IgG can be separated into two fractions of molecules, one that easily aggregates and one that is stable upon heating. In a buffer atpH=7.6 and 0.2 M NaCl it is found that about half of the original monomeric molecules do not aggregate even after heating at 62°C for 24 h. No differences in the antigen binding capacity of the heat-stable fraction and normal IgG are observed. Heat-stable molecules can partially be transformed to heat-aggregating molecules by a rapid acid denaturation followed by neutralization. Differential scanning calorimetry shows that the major heat denaturation, which is a two-phase process atpH=7.6, starts at about 63°C. Only minor differences between the heat-stable and the heat-labile fractions are observed in the thermograms. No differences are observed in the far-UV region of the CD spectra, indicating that the secondary structure of the heat-stable IgG does not differ from the native IgG molecule. While the aggregation of normal human IgG can be described by Smoluchowski kinetics, the heat-stable fraction follows another kinetics, which includes an activation step.  相似文献   

17.
Erythrocytes oxidized or aged in the circulation undergo membrane protein aggregation and anti-band 3 autoantibody binding to the cell surface. When human erythrocytes were mildly oxidized in vitro with 0.1 mM Fe(III) at 37 degrees C for 3 h, the aggregation of nonionic detergent C(12)E(8)-insoluble membrane protein and the binding of anti-band 3 IgG to the cell surface were increased. Incubation of membranes isolated from the oxidized cells increased the amount of protein aggregates by 5-fold after 6 h, while incubation for a further 12 h sharply decreased the amount of aggregates. In the presence of diisopropyl fluorophosphate (DFP), however, the increased amount of aggregates was maintained in the subsequent incubation. Western blot analysis of the aggregates using rabbit anti-band 3 showed that band 3 protein aggregates increased in the initial stage of incubation and decreased upon subsequent incubation, whereas the increased band 3 protein aggregates did not subsequently decrease when membranes were incubated in the presence of DFP. Incubation of the oxidized cells at 37 degrees C for 18 h caused reduction of the membrane protein aggregates and the (125)I-anti-band 3 IgG binding to the cell surface, while incubation in the presence of DFP did not cause these reductions. The results suggest that the oxidation-induced cell membrane protein aggregates were probably removed by 80-kDa serine protease, namely, oxidized protein hydrolase (OPH), in the oxidized cell membranes [Fujino et al. (1998) Biochim. Biophys. Acta 1374, 47-54; (1998) J. Biochem. 124, 1077-1085; (2000) Biochim. Biophys. Acta 1478, 102-112], and as a result the increased anti-band 3 binding to the cell surface was reduced.  相似文献   

18.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
微生物对偶氮染料的脱色及其基因工程研究进展   总被引:1,自引:0,他引:1  
偶氮染料广泛应用在纺织印染、造纸印刷等行业中。染料废水的排放将会导致严重的环境污染,使用微生物处理染料废水是解决此问题的有效方法。该文概述了微生物对偶氮染料的脱色的研究,包括细菌对偶氮染料的脱色,真菌对偶氮染料的脱色,脱色产生的芳香胺并进一步被降解,以及基因工程技术在微生物对偶氮染料脱色的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号