首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen Release Compound (HRC) has been a commercially available product for engineered bioremediation of anaerobically biodegradable contaminants since 1999. HRC is a polylactate ester that, upon hydration or microbial cleavage of its ester bonds, slowly releases lactic acid. Lactic acid serves as an electron donor for microbial reductive biodegradation, while also providing hydrogen and carbon where required. HRC is a viscous amber-colored liquid that is typically injected into a contaminated aquifer using direct push technology or backfill injection into boreholes created by traditional drilling methods. Once in place, HRC creates a plume of lactic acid and its fermentation products (other organic acids and hydrogen) downgradient of the injection area and serves to accelerate anaerobic bioremediation processes. In this review of HRC field application results, the authors summarize application types, contaminants treated, site types, application locations, injection methods, site lithology and hydrology, and concentration ranges of geochemical species. The source of this information is a database of more than 850 HRC field applications, a series of 80 HRC publications that are publicly available, and 44 detailed site case histories that are available electronically.  相似文献   

2.
Hydrogen Release Compound (HRC) has been a commercially available product for engineered bioremediation of anaerobically biodegradable contaminants since 1999. HRC is a polylactate ester that, upon hydration or microbial cleavage of its ester bonds, slowly releases lactic acid. Lactic acid serves as an electron donor for microbial reductive biodegradation, while also providing hydrogen and carbon where required. HRC is a viscous amber-colored liquid that is typically injected into a contaminated aquifer using direct push technology or backfill injection into boreholes created by traditional drilling methods. Once in place, HRC creates a plume of lactic acid and its fermentation products (other organic acids and hydrogen) downgradient of the injection area and serves to accelerate anaerobic bioremediation processes. In this review of HRC field application results, the authors summarize application types, contaminants treated, site types, application locations, injection methods, site lithology and hydrology, and concentration ranges of geochemical species. The source of this information is a database of more than 850 HRC field applications, a series of 80 HRC publications that are publicly available, and 44 detailed site case histories that are available electronically.  相似文献   

3.
Groundwater at an industrial site is contaminated with α hexachlorocyclohexane (HCH) and γ -HCH (i.e., lindane) (0.3 to 0.5 ppm). Other contaminants in the 1 to 15 ppm range include 1,2,4-trichlorobenezene (TCB), 1,2-dichlorobenzene (DCB), 1,3-DCB, 1,4-DCB, chlorobenzene (CB), benzene, trichloroethene (TCE), and cis-1,2-dichloroethene (cDCE). The aquifer consists of a shallow layer of soil over fractured dolomite, where most of the contaminant mass resides. The objective of this study was to compare (1) anaerobic reductive dechlorination of the polychlorinated contaminants, followed by aerobic biodegradation of the daughter products (mainly DCBs, CB, and benzene); and (2) aerobic biodegradation of α - and γ -HCH, TCB, DCBs, CB, and benzene, followed by anaerobic reduction of TCE and cDCE to ethene. Conventional wisdom suggests that sequential anaerobic and aerobic conditions are desirable for bioremediating sites contaminated by mixtures of polychlorinated organics. The results of this microcosm study suggest that a sequential aerobic and anaerobic approach may be more successful, although implementing this in the field presents some major challenges. In the dolomite microcosms incubated under aerobic conditions first (59 days), α - and γ -HCH were biodegraded close to the maximum contaminant level for lindane; all of the aromatic compounds were consumed; and there was partial removal of TCE and cDCE (presumptively via cometabolism). The subsequent switch to anaerobic conditions (day 101) yielded reductive dechlorination of the remaining TCE; a significant level of ethene was produced, although some cDCE and VC persisted. In contrast, sequential anaerobic (393 days) and aerobic treatment (498 days) for the dolomite microcosms was ineffective in completely removing the aromatic compounds, α -HCH, cDCE, and VC. For the soil microcosms, both treatment sequences were effective, most likely reflecting a greater abundance of the necessary microbes and electron donor in this part of the site.  相似文献   

4.
Trichloroethylene (TCE) is a toxic and recalcitrant groundwater pollutant. An innovative technology using microbial produced Pd(0) nanoparticles for the remediation of TCE contaminated groundwater was developed. The nanoscale bio-Pd particles were precipitated on the biomass of Shewanella oneidensis and hydrogen gas, formate, or formic acid were used as hydrogen donors. Ethane turned out to be the only organic degradation product and no intermediate chlorinated reaction products were detected. Subsequently bio-Pd was implemented in a plate membrane reactor (MR) for the treatment of water containing TCE. In a continuous MR system, containing 50 mg L(-1) bio-Pd, removal rates up to 2,515 mg TCE day(-1) g(-1) Pd were achieved with H(2) gas as hydrogen donor. The measured chloride mass balance confirmed the removal rates. This work shows that a complete, efficient and rapid removal of TCE was achieved with bio-Pd and that a MR system containing bio-Pd and supplied with hydrogen gas offers an alternative for the current remediation technologies of water contaminated with TCE.  相似文献   

5.
Extensive trichloroethylene (TCE) groundwater contamination has resulted from discharges to a former seepage basin in the A/M Area at the Department of Energy's Savannah River Site. The direction of groundwater flow has been determined and a seep line where the contaminated groundwater is estimated to emerge as surface water has been identified in a region of the Southern Sector of the A/M Area. This study was undertaken to estimate the potential of four rhizosphere soils along the seep line to naturally attenuate TCE. Microcosms were setup to evaluate both biotic and abiotic attenuation of TCE. Results demonstrated that sorption to soil was the dominant mechanism during the first week of incubation, with as much as 90% of the TCE removed from the aqueous phase. Linear partitioning coefficients (Kd) ranged from 0.83 to 7.4?mL/g, while organic carbon partition coefficients (Koc) ranged from 72 to 180?mL/gC. Diffu-sional losses from the microcosms appeared to be a dominant fate mechanism during the remainder of the experiment, as indicated by results from the water controls. A limited amount of TCE biodegradation was observed, and attempts to stimulate TCE biodegradation by either methanotrophic or methanogenic activity through amendments with methane, oxygen, and methanol were unsuccessful. The appearance of cis-1,2-dichloroethylene (c-DCE), and trans-1,2-dichloroethylene (t-DCE) confirmed the potential for anaerobic reductive dechlorination. However, these daughter products represented less than 5% of the initial TCE added. The sorption results indicate that natural attenuation may represent a viable remediation option for the TCE plume as it passes through the rhizosphere.  相似文献   

6.
The ability of dehalogenating bacteria to compete with sulfate reducing bacteria for electron donor was studied in microcosms that simulated groundwater contaminated with both chlorinated ethylenes and fuel hydrocarbon compounds. Results demonstrate that reductive dehalogenation of perchloroethylene to ethylene can proceed in the presence of > 100 mg l(-1) sulfate. The hydrogen concentration, which was 2.5 nM in the presence of approximately 150 mg l(-1) sulfate and in the absence of chlorinated compounds, decreased to 0.7 nM during the dechlorination of trichloroethylene and increased to 1.6 nM during the dechlorination of cis-dichloroethylene and vinyl chloride. With only sediment associated donor ("historical" donor) present, dechlorination of trichloroethylene proceeded slowly to ethylene (on a time scale of several years). Addition of toluene, a model hydrocarbon compound, stimulated dechlorination indirectly. Toluene degradation was rapid and linked to sulfate utilization, and presumably formed fermentable substrates that served as hydrogen donors. Dehalogenation was inhibited in soil free microcosms containing 5 mM sulfide, but inhibition was not observed when either aquifer sediment or 5 mM ferrous chloride was added.  相似文献   

7.
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.  相似文献   

8.
Chlorinated hydrocarbon groundwater plume data from a multisite study were evaluated by a variety of statistical techniques (correlation, analysis of covariance, principal components) to quantify the effects of biotransformations (reductive dehalogenation) on plume length. After accounting for the effects of groundwater velocity, source strength, and biases in the data collection process, chlorinated hydrocarbon plume lengths at sites where reductive dehalogenation was occurring were found to be significantly shorter on average, by roughly a factor of two, than those where it was not. Moreover, principal component analyses indicated significant differences in the behavior of chlorinated hydrocarbon plumes between sites with and without evidence of reductive dehalogenation, respectively. The advantage in examining plume behavior from this population-oriented perspective is that overall trends in plume behavior can be evaluated despite site-specific influences such as heterogeneities and unique release histories. Ultimately, it is these average trends that would be of the most interest to policymakers because they represent the ranges of conditions that will be encountered. This is especially important in the case of chlorinated hydrocarbons because they will biotransform at rates significant for appreciable natural attenuation only in certain instances.  相似文献   

9.
The microbial community of a groundwater system contaminated by 1,2-dichloroethane (1,2-DCA), a toxic and persistent chlorinated hydrocarbon, has been investigated for its response to biostimulation finalized to 1,2-DCA removal by reductive dehalogenation. The microbial population profile of samples from different wells in the aquifer and from microcosms enriched in the laboratory with different organic electron donors was analyzed by ARISA (Amplified Ribosomal Intergenic Spacer Analysis) and DGGE (Denaturing Gradient Gel Electrophoresis) of 16S rRNA genes. 1,2-DCA was completely removed with release of ethene from most of the microcosms supplemented with lactate, acetate plus formate, while cheese whey supported 1,2-DCA dehalogenation only after a lag period. Microbial species richness deduced from ARISA profiles of the microbial community before and after electron donor amendments indicated that the response of the community to biostimulation was heterogeneous and depended on the well from which groundwater was sampled. Sequencing of 16S rRNA genes separated by DGGE indicated the presence of bacteria previously associated with soils and groundwater polluted by halogenated hydrocarbons or present in consortia active in the removal of these compounds. A PCR assay specific for Desulfitobacterium sp. showed the enrichment of this genus in some of the microcosms. The dehalogenation potential of the microbial community was confirmed by the amplification of dehalogenase-related sequences from the most active microcosms. Cloning and sequencing of PCR products indicated the presence in the metagenome of the bacterial community of a new dehalogenase potentially involved in 1,2-DCA reductive dechlorination.  相似文献   

10.
Phytoremediation uses the natural ability of plants to degrade contaminants in groundwater. A field demonstration designed to remediate aerobic shallow ground‐water contaminated with trichloroethene began in April 1996 with the planting of cottonwood trees, a short‐rotation woody crop, over an approximately 0.2‐ha area at the Naval Air Station, Fort Worth, Texas. The project was developed to demonstrate capture of contaminated groundwater and degradation of contaminants by phreatophytes. Analyses from samples of groundwater collected from July 1997 to June 1998 indicate that tree roots have the potential to create anaerobic conditions in the groundwater that will facilitate degradation of trichloroethene by microbially mediated reductive dechlorination. Organic matter from root exudates and decay of tree roots probably stimulate microbial activity, consuming dissolved oxygen. Dissolved oxygen concentrations, which varied across the site, were smallest near a mature cottonwood tree (about 20 years of age and 60 meters southwest of the cottonwood plantings) where degradation products of trichloroethene were measured. Oxidation  相似文献   

11.
Abstract: Exploiting microorganisms for remediation of waste sites is a promising alternative to groundwater pumping and above ground treatment. The objective of in situ bioremediation is to stimulate the growth of indigenous or introduced microorganisms in regions of subsurface contamination, and thus to provide direct contact between microorganisms and the dissolved and sorbed contaminants for biotransformation. Subsurface microorganisms detected at a former manufactured gas plant site contaminated with coal tars mineralized significant amounts of naphthalene (8–43%) and phenanthrene (3–31%) in sediment-water microcosms incubated for 4 weeks under aerobic conditions. Evidence was obtained for naphthalene mineralization (8–13%) in the absence of oxygen in field samples. These data suggest that biodegradation of these compounds is occurring at the site, and the prospects are good for enhancing this biodegradation. Additional batch studies demonstrated that sorption of naphthalene onto aquifer materials reduced the extent and rate of biodegradation, indicating that desorption rate was controlling the biodegradation performance.  相似文献   

12.
We used geochemical analyses of groundwater and laboratory-incubated microcosms to investigate the physiological responses of naturally occurring microorganisms to coal-tar-waste constituents in a contaminated aquifer. Waters were sampled from wells along a natural hydrologic gradient extending from uncontaminated (1 well) into contaminated (3 wells) zones. Groundwater analyses determined the concentrations of carbon and energy sources (pollutants or total organic carbon), final electron acceptors (oxygen, nitrate, sulfate), and metabolic byproducts (dissolved inorganic carbon [DIC], alkalinity, methane, ferrous iron, sulfide, Mn2+). In the contaminated zone of the study site, concentrations of methane, hydrogen, alkalinity, and DIC were enhanced, while dissolved oxygen and nitrate were depleted. Field-initiated biodegradation assays using headspace-free serum bottle microcosms filled with groundwater examined metabolism of the ambient organic contaminants (naphthalene, 2-methylnaphthalene, benzothiophene, and indene) by the native microbial communities. Unamended microcosms from the contaminated zone demonstrated the simultaneous degradation of several coal-tar-waste constituents at the in situ temperature (10°C). Lag phases prior to the onset of biodegradation indicated the prevalence of both aerobic and anaerobic conditions in situ. Electron acceptor-amended microcosms from the most contaminated well waters demonstrated only aerobic naphthalene degradation. Collectively, the geochemical and microbial evidence show that biodegradation of coal-tar-waste constituents occurs via both aerobic and anaerobic terminal electron accepting processes at this site.  相似文献   

13.
Newell CJ  Aziz CE 《Biodegradation》2004,15(6):387-394
The sustainability of biodegradation reactions is of interest at Type 1 chlorinated solvent sites where monitored natural attenuation is being considered as a remedial alternative. Type 1 chlorinated solvent sites are sites undergoing reductive dechlorination where anthropogenic substrates (such as landfill leachate or fermentable organics in the waste materials) ferment to produce hydrogen, a key electron donor. A framework is provided that classifies Type 1 chlorinated solvent sites based on the relative amounts and the depletion rates of the electron donors and the electron acceptors (i.e., chlorinated solvents). Expressions are presented for estimating the total electron donor demand due to the presence of solvents and competing electron acceptors such as dissolved oxygen, nitrate, and sulfate. Finally, a database of 13 chlorinated solvent sites was analyzed to estimate the median and maximum mass discharge rate for dissolved oxygen, nitrate, and sulfate flowing into chlorinated solvent plumes. These values were then used to calculate the amount of hydrogen equivalents and potential for lost perchloroethylene (PCE) biodegradation represented by the inflow of these competing electron acceptors. The median and maximum mass of PCE biodegradation lost due to competing electron acceptors, assuming 100% efficiency, was 226 and 4621 kg year(-1), respectively.  相似文献   

14.
A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.  相似文献   

15.
A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.  相似文献   

16.
Fermentative and methanogenic bacteria have been found repeatedly as important members of microbial flora in anoxic zones of the subsurface—in pristine as well as in contaminated groundwater aquifers. These bacteria, which together with obligate proton reducers form complex methanogenic communities, are significant as decomposers of organic matter under conditions of exogenous electron acceptor depletion. Their metabolic activity has been demonstrated in laboratory microcosms derived from aquifer material, and also in the subsurface in situ. Methanogenic communities have been shown to transform numerous organic pollutants, or even to completely degrade these compounds with the production of carbon dioxide and methane. Depending on the chemical structure of the pollutant, such a compound can be used as an electron donor and a carbon/energy source for fermentative microorganisms (which is typically the case with highly reduced compounds); alternatively, a highly oxidized pollutant can be used as a potential electron acceptor or electron sink. This review addresses fermentative/methanogenic degradation of chlorinated and nonchlorinated aromatic hydrocarbons and phenols by subsurface microorganisms; for comparison, it briefly relates also other types of anaerobic transformations (under sulfate‐reducing, iron‐reducing, and denitrifying conditions). Furthermore, it outlines transformation pathways, those that are proposed as well as those that are already partially proved, for aromatic hydrocarbons and phenols under fermentative/methanogenic conditions; finally, it discusses the relevance of these processes to bioremediation of contaminated groundwater aquifers.  相似文献   

17.
In situ chemical oxidation with permanganate has become an accepted remedial treatment for groundwater contaminated with chlorinated solvents. This study focuses on the immediate and short-term effects of sodium permanganate (NaMnO4) on the indigenous subsurface microbial community composition in groundwater impacted by trichloroethylene (TCE). Planktonic and biofilm microbial communities were studied using groundwater grab samples and reticulated vitreous carbon passive samplers, respectively. Microbial community composition was analyzed by terminal restriction fragment length polymorphism and a high-density phylogenetic microarray (PhyloChip). Significant reductions in microbial diversity and biomass were shown during NaMnO4 exposure, followed by recovery within several weeks after the oxidant concentrations decreased to <1 mg/L. Bray–Curtis similarities and nonmetric multidimensional scaling showed that microbial community composition before and after NaMnO4 was similar, when taking into account the natural variation of the microbial communities. Also, 16S rRNA genes of two reductive dechlorinators (Desulfuromonas spp. and Sulfurospirillum spp.) and diverse taxa capable of cometabolic TCE oxidation were detected in similar quantities by PhyloChip across all monitoring wells, irrespective of NaMnO4 exposure and TCE concentrations. However, minimal biodegradation of TCE was observed in this study, based on oxidized conditions, concentration patterns of chlorinated and nonchlorinated hydrocarbons, geochemistry, and spatiotemporal distribution of TCE-degrading bacteria.  相似文献   

18.
Anaerobic bacteria can reductively dehalogenate aliphatic and aromatic halogenated compounds in a respiratory process. Only a few of these bacteria have been isolated in pure cultures. However, long acclimation periods, substrate specificity, high dehalogenation rates, and the possibility to enrich for the dehalogenation activity by subcultivation in media containing an electron donor indicate that many of the reductive dehalogenations in the environment are catalyzed by specific bacteria. Molecular hydrogen or formate appear to be good electron donors for the enrichment of such organisms. Furthermore, systems have to be employed which supply the cultures with the halogenated compounds beyond their toxicity level. All bacteria that are presently available in pure culture and grow with a halogenated compound as electron acceptor are members of new genera. Based on experimental results with the membrane-impermeable electron mediator methyl viologen, a model of the respiration system ofDehalobacter restrictus, a tetrachloroethene-dechlorinating bacterium, is presented. Further studies of the biochemistry and energetics of respiratory-dehalogenating strains will help to understand the mechanisms involved and perhaps reveal the evolutionary origin of the dehalogenating enzyme systems.Abbreviations PCE tetrachloroethene - TCE trichloroethene - cis-1,2-DCE cis-1,2-dichloroethene - PCER tetrachloroethene reductase  相似文献   

19.
Bioremediation of aromatic hydrocarbons in groundwater and sediments is often limited by dissolved oxygen. Many aromatic hydrocarbons degrade very slowly or not at all under anaerobic conditions. Nitrate is a good alternative electron acceptor to oxygen, and denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. Providing both nitrate and microaerophilic levels of oxygen may result in oxidation of the stable benzene rings in aromatic contaminants and allow for the intermediates of this oxidation to degrade via denitrification. The effects of using mixed electron acceptors on biodegradation of subsurface contaminants is unclear. Below some critical oxygen threshold, aerobic biodegradation is inhibited, however high levels of oxygen inhibit denitrification. The mechanisms which regulate electron transfer to oxygen and nitrate are complex. This review: 1) describes the factors which may affect the utilization of oxygen and nitrate as dual electron acceptors during biodegradation; 2) summarizes the incidence of dual use of nitrate and oxygen (aerobic denitrification); and 3) presents evidence of the effectiveness of bioremediation under mixed oxygen/nitrate conditions. Received 08 November 1995/ Accepted in revised form 09 June 1996  相似文献   

20.
Bioventing soils contaminated with petroleum hydrocarbons   总被引:4,自引:0,他引:4  
Summary Bioventing combines the capabilities of soil venting and enhanced bioremediation to cost-effectively remove light and middle distillate hydrocarbons from vadose zone soils and the groundwater table. Soil venting removes the more volatile fuel components from unsaturated soil and promotes aerobic biodegradation by driving large volumes of air into the subsurface. In theory, air is several thousand times more effective than water in penetrating and aerating fuel-saturated and low permeability soil horizons. Aerobic microbial degradation can mitigate both residual and vapor phase hydrocarbon concentrations. Soil venting is being evaluated at a number of U.S. military sites contaminated with middle distillate fuels to determine its potential to stimulate in situ aerobic biodegradation and to develop techniques to promote in situ vapor phase degradation. In situ respirometric evaluations and field pilot studies at sites with varying soil conditions indicate that bioventing is a cost-effective method to treat soils contaminated with jet fuels and diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号