首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Motility responses triggered by changes in the electron transport system are collectively known as energy taxis. In Azospirillum brasilense, energy taxis was shown to be the principal form of locomotor control. In the present study, we have identified a novel chemoreceptor-like protein, named Tlp1, which serves as an energy taxis transducer. The Tlp1 protein is predicted to have an N-terminal periplasmic region and a cytoplasmic C-terminal signaling module homologous to those of other chemoreceptors. The predicted periplasmic region of Tlp1 comprises a conserved domain that is found in two types of microbial sensory receptors: chemotaxis transducers and histidine kinases. However, the function of this domain is currently unknown. We characterized the behavior of a tlp1 mutant by a series of spatial and temporal gradient assays. The tlp1 mutant is deficient in (i) chemotaxis to several rapidly oxidizable substrates, (ii) taxis to terminal electron acceptors (oxygen and nitrate), and (iii) redox taxis. Taken together, the data strongly suggest that Tlp1 mediates energy taxis in A. brasilense. Using qualitative and quantitative assays, we have also demonstrated that the tlp1 mutant is impaired in colonization of plant roots. This finding supports the hypothesis that energy taxis and therefore bacterial metabolism might be key factors in determining host specificity in Azospirillum-grass associations.  相似文献   

2.
Migration of associative bacteria Azospirillum brasilense in semisolid media is performed mainly by swarming (Swa+ phenotype), which depends on the flagellar functioning and intercellular contacts. Non-swarming mutants of A. brasilense Sp245 lacking a polar flagellum migrate in semisolid media with microcolony formation using a unrevealed mechanism (Gri+ phenotype). The study of wheat root colonization dynamics demonstrated that A. brasilense Sp245 Gri+ mutants exhibited lower capacity for wheat root adsorption. However, after “anchoring” has occurred, both A. brasilense Sp245 and its Swa-Gri+ mutants colonized the growing roots with virtually the same efficiency. All strains under study formed microcolonies on the surface of roots, stimulated root branching, and exhibited changes in the composition of protein antigens exposed on the bacterial cell surface. Indirect evidence was obtained for enhanced production of genus-specific protein antigens in the process of A. brasilense Sp245 adaptation to growth on plant roots.  相似文献   

3.
4.
Inter-root movement and dispersion of the beneficial bacterium Azospirillum brasilense were monitored in root systems of wheat seedlings growing in the field and in growth chamber soil trays. Two strains were used, a motile wild-type strain (Cd, mot+) and a motility deficient strain (mot), which was derived from the Cd strain. Root colonization by two wild-type strains (Cd and Sp-245) was studied in 64 plant species growing in pots in the greenhouse. The two wild-type strains of A. brasilense were capable of colonizing all tested plant species. In soil trays and in the field, mot+ cells moved from inoculated roots to non-inoculated roots of either wheat plants or weeds growing in the same field plot, but the mot strain did not move toward non-inoculated roots of either plant species. In the field, both mot+ and mot strains of A. brasilense survived well in the rhizosphere of wheat for 30 days, but only mot+ moved between different weeds, regardless of the species, botanical family, or whether they were annuals or perennials. In plant-free, water-saturated soils, either in columns or in the field, both strains remained at the inoculation site and did not move.It is proposed (a) that A. brasilense is not a plant-specific bacterium and that (b) colonization of the entire root system in soil is an active process determined by bacterial motility; it is not plant specific, but depends on the presence of plants. Correspondence to: Y. Bashan  相似文献   

5.
The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.  相似文献   

6.
The effect of wheat root exudates on the exopolysaccharide (EPS) composition and the lipopolysaccharide (LPS) profile of Azospirillum brasilense Cd under saline stress was studied. EPS of A. brasilense Cd was composed of glucose (47%), mannose (3%), xylose (4%), fucose (28%), rhamnose (6%), arabinose (1%) and galactose (11%). Under saline stress, A. brasilense produced a totally different EPS, composed mainly of galactose. Root exudates induced changes in A. brasilense EPS composition only under normal conditions, consisting of higher amounts of arabinose and xylose compared with EPS of bacteria grown without root exudates. No changes were induced by root exudates when A. brasilense was grown under saline stress. Additionally, root exudates induced changes in the LPS profile, both under normal and stress conditions.  相似文献   

7.
The pathways for catabolism of fructose were investigated in the type strains of Azospirillum lipoferum and Azospirillum brasilense grown aerobically with (NH4)2SO4 as the nitrogen source. When grown on fructose, the former species possessed a complete Entner-Doudoroff pathway, whereas the latter species lacked activity for glucose-6-phosphate dehydrogenase. Both species possessed a complete catabolic Embden-Meyerhof-Parnas pathway. Neither species possessed the key enzyme of the hexose monophosphate pathway, 6-phosphogluconate dehydrogenase. Both species could phosphorylate fructose to fructose-1-phosphate by means of a phosphoenolpyruvate-phosphotransferase system, and high activities of 1-phosphofructokinase occurred. Both species possessed glucokinase activity, but only A. lipoferum had hexokinase activity; moreover, the cells of A. brasilense were nearly impermeable to glucose, accounting for the inability of this species to grow on glucose. Both species possessed pyruvate dehydrogenase, a complete tricarboxylic acid cycle, a glyoxylate shunt, and malic enzyme. Analysis of the acidic end products for both species indicated the formation of only small amounts of various organic acids, and most of the titratable acidity was due to utilization of the ammonium ions of the medium. Gluconic acid was not formed during growth of either species on fructose but was detected during growth of A. lipoferum on glucose; this species also possessed an NADP-linked glucose dehydrogenase and gluconokinase.  相似文献   

8.
9.
Azospirillum brasilense strain Cd responded chemotactically to amino acids, sugars and organic acids. Chemotactic rings were observed in semisolid agar plates containing oxidizable substrates. Increasing sodium succinate concentration decreased the velocity of ring expansion. Chemotactic activity of Azospirillum was also examined by a newly developed technique using a channelled chamber. Varying the concentrations of aspartic and glutamic acids affected the chemotactic response of the bacteria. In both assays chemotaxis was obtained under conditions that prevented aerotaxis.  相似文献   

10.
The effect of cellulase and pectinase on bacterial colonization of wheat was studied by three different experiments. In the first experiment, the root colonization of 3 wheat cultivars (Ghods, Roshan and Omid) by two A. brasilense strains (Sp7 and Dol) was compared using pre-treated roots with cellulase and pectinase, and non-treated with these enzymes (control). Although the root colonization varied greatly among strain-plant combinations in controls, the pre-treatment of roots with polysaccharide degrading enzymes significantly increased the bacterial count in roots, regardless of the strain-plant combination. This might be an indication that cell wall may act as an important factor in plant-Azospirillum interaction. In the second experiment, the root cellulase activity of the same wheat cultivars treated with and without the two Azospirillum brasilense, strains (Sp7 and Dol) was compared. The pre-treatment of wheat roots with Azospirillum enhanced the cellulase activity of wheat root extracts. Thus, the cellulase activity might participate in the initial colonization of wheat roots by Azospirillum. The comparison of the cellulase activity of root extracts within inoculated and non-inoculated seedlings showed that the inoculation had enhanced the cellulase activity in root extracts, but this effect was directly dependent on the strain-plant combination. Strain Sp7 stimulated the highest cellulase activity in cv. Roshan, but strain Dol induced the highest enzyme activity in cv. Ghods. In the third experiment, several growth parameters of those 3 wheat cultivars treated with and without those two bacterial strains (Sp7 and Dol) were compared. The highest magnitude of growth responses caused by Sp7 strain was in the cv Roshan, but Dol strain stimulated the highest growth in cv Ghods. Therefore, effective colonization may contribute to more growth responses.  相似文献   

11.
12.
Fischer  Sonia  Rivarola  Viviana  Mori  Gladys 《Plant and Soil》2000,225(1-2):187-191
The effect of saline stress on the colonization of wheat was analyzed by using Azospirillum brasilense Cd carrying the fusion of the reporter gene lacZ (β-galactosidase) with the N2 fixation gene promoter nifA. Colonization was also studied by inducing para-nodules on wheat roots using 2,4-D, establishing that these structures acted as bacterium protected niches. Bacteria grown under standard conditions were distributed along the whole root system, except the elongation zone, and colonized the para-nodules. Bacteria experiencing saline stress were mainly localized at the root tips and the lateral roots. In 2,4-D treated plants, most of the bacteria were present around the basal surface of the modified lateral root structures. Using the MPN method, there were not statistical differences between the numbers of control and stressed bacteria. As this method estimates endophytic colonization in contrast with the one using X-gal, which emphasizes colonization on the root surface, both procedures demonstrated to be necessary, concluding that salt treatment reduced surface colonization (X-gal) but not colonization inside the root. The bacterial counts made on inoculated wheat roots indicated higher numbers of both control and stressed bacteria in roots treated with 2,4-D compared with untreated roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Azospirillum brasilense sp7 was exposed to 2mm Zn2+ in minimal medium upon which the cells turned black and non-motile within 24 h. A streptomycin-resistant variant did not exhibit this phenomenon and is sensitized to zinc. A prelude to encystation was the elution of a melanin-like pigment into the medium.The authors are with the Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India  相似文献   

14.
The nitrogenase activity of the microaerophilic bacteria Azospirillum brasilense and A. lipoferum was completely inhibited by 2.0 kPa of oxygen (approximately 0.02 atm of O2) in equilibrium with the solution. The activity could be partially recovered at optimal oxygen concentrations of 0.2 kPa. In contrast to the NH4+ switch off, no covalent modification of the nitrogenase reductase (Fe protein) was involved, as demonstrated by Western-blotting and 32P-labeling experiments. However, the inhibition of the nitrogenase activity under anaerobic conditions was correlated with covalent modification of the Fe protein. In contrast to the NH4+ switch off, no increase in the cellular glutamine pool and no modification of the glutamine synthetase occurred under anaerobic switch-off conditions. Therefore, a redox signal, independent of the nitrogen control of the cell, may trigger the covalent modification of the nitrogenase reductase of A. brasilense and A. lipoferum.  相似文献   

15.
Extracellular polysaccharides synthesized by Azospirillum brasilense and A. lipoferum were shown on agar plates and liquid flocculating cultures. The six strains used in this work expressed a mucoid phenotype, yielding positive calcofluor fluorescence under UV light. The calcofluor-binding polysaccharides were distributed between the capsular and exopolysaccharide fractions, suggesting exocellular localization. No calcofluor fluorescence was observed in residual cells after separation of the capsular and exopolysaccharide fractions. Cellulose content was significantly higher in flocculating than in nonflocculating cultures. Failure to induce flocculation by addition of cellulose (100 mg/ml) to nonflocculating cultures, together with the sensitivity of flocs to cellulase digestion, suggested that cellulose is involved in maintenance of floc stability. Different A. brasilense and A. lipoferum strains bound to a wheat lectin (fluorescein isothiocyanate-wheat germ agglutinin), indicating the occurrence of specific sugar-bearing receptors for wheat germ agglutinin on the cell surface. The biochemical specificity of the reaction was shown by hapten inhibition with N-acetyl-D-glucosamine. All six strains failed to recognize fluorescein isothiocyanate-soybean seed lectin under our experimental conditions. We conclude that azospirilla produce exocellular polysaccharides with calcofluor- and lectin-binding properties.  相似文献   

16.
The analysis of an A. brasilense Tn5 mutant shows significant phenotypic differences compared to the wild type isogenic strain. The transposon was located disrupting an open reading frame of 840 bp (ORF280) which exhibits similarity to the universal stress protein (USP) family. The USP family encompasses proteins that are expressed as a response to cell growth arrest. The mutant revealed a pleiotrophic phenotype with respect to different stress conditions. The ORF mutation results in an increased sensitivity of cells to carbon starvation and heat-shock treatment. However, the mutant strain displays a higher tolerance to oxidative stress agents. In contrast to the isogenic parent strain, colonies of the mutant are weakly stained by Congo red added to solid media and are impaired in flocculation. Scanning electron micrographs revealed that the mutant lacks part of the surface material present as a thick layer of exopolysaccharides on the surface of the wild type cells. The pleiotrophic phenotype revealed for this mutant and the similarity of the C-terminal region of ORF280 to UspA from E. coli indicates that the A. brasilense ORF280 may be a Usp-like protein. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The phenomena of flocculation and floc formation by Azospirillum brasilense Sp7 (ATCC 29145) and Azospirillum lipoferum Sp59b (ATCC 29707) were studied in aerobic liquid cultures. Carbon sources representative of various entry pathways in combination with various nitrogen sources induced flocculation in both species of azospirilla. Noticeably, the combination of fructose and nitrate was the most effective in terms of floc yields. Phase-contrast microscopic observations revealed a transition in cell morphology from freely motile, vibrioid cells to nonmotile, highly refractile encysting forms during the formation of flocs. The nonmotile forms in flocs appeared to be entangled within a fibrillar matrix, and the cells were highly resistant to desiccation. Dried flocs kept for almost 6 months still maintained the highly refractile encysting forms, and their viability was confirmed by pellicle formation and acetylene reduction in semisolid malate medium. Electron microscopic observations of the desiccated flocs revealed the presence of cell forms containing abundant poly beta-hydroxybutyrate granules within a central body and surrounded by a thick layer of exopolysaccharides. The latter were characterized by alkali and acid digestion, crude cellulase hydrolysis, and calcofluor staining. It was concluded that the overproduction of exocellular polymers induces the flocculent growth and is associated with the concomitant transformation of vegetative cells to the desiccation-resistant encysting forms under limiting cultural conditions.  相似文献   

18.
The root-to-root travel of the beneficial bacterium Azospirillum brasilense on wheat and soybean roots in agar, sand, and light-textured soil was monitored. We used a motile wild-type (Mot+) strain and a motility-deficient (Mot-) strain which was derived from the wild-type strain. The colonization levels of inoculated roots were similar for the two strains. Mot+ cells moved from inoculated roots (either natural or artificial roots in agar, sand, or light-textured soil) to noninoculated roots, where they formed a band-type colonization composed of bacterial aggregates encircling a limited part of the root, regardless of the plant species. The Mot- strain did not move toward noninoculated roots of either plant species and usually stayed at the inoculation site and root tips. The effect of attractants and repellents was the primary factor governing the motility of Mot+ cells in the presence of adequate water. We propose that interroot travel of A. brasilense is an essential preliminary step in the root-bacterium recognition mechanism. Bacterial motility might have a general role in getting Azospirillum cells to the site where firmer attachment favors colonization of the root system. Azospirillum travel toward plants is a nonspecific active process which is not directly dependent on nutrient deficiency but is a consequence of a nonspecific bacterial chemotaxis, influenced by the balance between attractants and possibly repellents leaked by the root.  相似文献   

19.
The conjugative plasmids in Azospirillum brasilense strains S17. Sp107, Sp245, SpBr14, JM6B2, JM82Al, UQ1794, UQI796 and in Azospirillum lipoferum strain RG20 were prove to exist for the first time in connection with their potency to mobilize a non-conjugative IncQ-plasmid pVZ361 from IncQ-group (ori RSF1010, KmR, SuR. 11.4 kb) for conjugated transfer to aplasmid strains Agrobacterium tumefaciens and Pseudomonas putida at high frequencies.  相似文献   

20.
We studied changes in the physiological and biochemical parameters of wheat (Triticum aestivum L. ??Saratovskaya 29??) seedlings treated with lipopolysaccharide isolated from the outer membrane of the associative bacterium Azospirillum brasilense Sp245. The obtained data were compared with (i) the results of plant inoculation with whole Sp245 cells and (ii) the effects exerted by the lipopolysaccharide and whole cells of the enterobacterium Escherichia coli K12 and the specific legume symbiont Rhizobium leguminosarum 249. The functional activity of meristematic cells was judged by their mitotic index and by the results of immunochemical determination of the proliferative antigen of initials, a molecular marker for wheat meristem cells. Treatment of the seedling root system with 10 ??g mL?1 of Sp245 lipopolysaccharide increased the mitotic index (1.8-fold) and the antigen content (approximately 1.4-fold). These increases were comparable to the effects produced by whole cell inoculation (2- and 1.4-fold, respectively). Our findings give grounds to consider lipopolysaccharide as an active component of the Azospirillum cell surface that not only determines bacterial contact interactions with wheat roots but also participates in the induction of plant responses to these interactions. We finally discuss the linkage between the proliferative antigen of initials and the transduction of a hormonal signal to the cell, as well as the informational value of this antigen as an indicator of effectiveness of plant?Cbacterial interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号