首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.  相似文献   

2.
N Friedman  M Sheves  M Ottolenghi 《Biochemistry》1991,30(22):5400-5406
In variance with chlorophyll-based photosynthetic pigments, the triplet states of rhodopsins, either visual or photosynthetic, have not been observed experimentally. This is due to the ultrafast crossing from S1 to S0, which effectively competes with intersystem crossing to the triplet (T1) state. In order to populate T1 indirectly, laser photolysis experiments are performed with model protonated Schiff bases of retinal in solution, in which both inter- and intramolecular energy transfer to the polyene chromophore are carried out from an appropriate triplet energy donor. The experiments are then extended to bacteriorhodopsin (bR) by detaching the native retinal chromophore from the protein-binding site and replacing it by an analogous (synthetic) protonated Schiff base polyene, attached in a nonconjugated way to a naphthone triplet donor. Pulsed laser excitation of the latter moiety led, for the first time, to the observation of the triplet state of a rhodopsin. Possible locations and roles of the T1 state in bR and in visual pigments are discussed briefly.  相似文献   

3.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

4.
Our previous solid-state 13C NMR studies on bR have been directed at characterizing the structure and protein environment of the retinal chromophore in bR568 and bR548, the two components of the dark-adapted protein. In this paper, we extend these studies by presenting solid-state NMR spectra of light-adapted bR (bR568) and examining in more detail the chemical shift anisotropy of the retinal resonances near the ionone ring and Schiff base. Magic angle spinning (MAS) 13C NMR spectra were obtained of bR568, regenerated with retinal specifically 13C labeled at positions 12-15, which allowed assignment of the resonances observed in the dark-adapted bR spectrum. Of particular interest are the assignments of the 13C-13 and 13C-15 resonances. The 13C-15 chemical resonance for bR568 (160.0 ppm) is upfield of the 13C-15 resonance for bR548 (163.3 ppm). This difference is attributed to a weaker interaction between the Schiff base and its associated counterion in bR568. The 13C-13 chemical shift for bR568 (164.8 ppm) is close to that of the all-trans-retinal protonated Schiff base (PSB) model compound (approximately 162 ppm), while the 13C-13 resonance for bR548 (168.7 ppm) is approximately 7 ppm downfield of that of the 13-cis PSB model compound. The difference in the 13C-13 chemical shift between bR568 and bR548 is opposite that expected from the corresponding 15N chemical shifts of the Schiff base nitrogen and may be due to conformational distortion of the chromophore in the C13 = C14-C15 bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A Scatchard plot for the strongly bound Eu3+ to deionized bacteriorhodopsin (bR) was made using a method based on measuring the concentration of unbound Eu3+ from its fluorescence intensity. The results suggest that the first mole of Eu3+ added to a mole of bR is strongly bound by displacing 2-3 protons. In order to reconcile this result with the previous time-resolved fluorescence studies on Eu(3+)-regenerated bR, which showed the presence of 3 sites of comparable binding constants, one is forced to conclude that the emission from the strongly bound Eu3+ is completely quenched, e.g. by energy transfer to the retinal. For this to take place, the Eu3+ must be within a few A from the retinal, i.e. within the retinal pocket (the active site). The possible importance of this conclusion to the deprotonation mechanism of the protonated Schiff base, the switch of the proton pump in bR, is discussed.  相似文献   

6.
The first step of the bacteriorhodopsin (bR) photocycle involves the formation of a red-shifted product, K. Fourier transform infrared difference spectra of the bR570 to K630 transition at 81 K has been measured for bR containing different isotopic substitutions at the retinal Schiff base. In the case of bacteriorhodopsin containing a deuterium substitution at the Schiff base nitrogen, carbon 15, or both, we find spectral changes in the 1600-1610- and 1570-1580-cm-1 region consistent with the hypothesis that the K630 C=N stretching mode of a protonated Schiff base is located near 1609 cm-1. A similar set of Schiff base deuterium substitutions for retinal containing a 13C at the carbon 10 position strongly supports this conclusion. This assignment of the K630 C=N stretching vibration provides evidence that the bR Schiff base proton undergoes a substantial environmental change most likely due to separation from a counterion. In addition, a correlation is found between the C=N stretching frequency and the maximum wavelength of visible absorption, suggesting that movement of a counterion relative to the Schiff base proton is the main source of absorption changes in the early stages of the photocycle. Such a movement is a key prediction of several models of proton transport and energy transduction. Evidence is also presented that one or more COOH groups are involved in the formation of the K intermediate.  相似文献   

7.
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the critical C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump–probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck–Condon (FC) state does not involve sub-stantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.  相似文献   

8.
The structure and the photocycle of bacteriorhodopsin (bR) containing 13-cis,15-syn retinal, so-called bR548, has been studied by means of molecular dynamics simulations performed on the complete protein. The simulated structure of bR548 was obtained through isomerization of in situ retinal around both its C13-C14 and its C15-N bond starting from the simulated structure of bR568 described previously, containing all-trans,15-anti retinal. After a 50-ps equilibration, the resulting structure of bR548 was examined by replacing retinal by analogues with modified beta-ionone rings and comparing with respective observations. The photocycle of bR548 was simulated by inducing a rapid 13-cis,15-anti-->all-trans,15-syn isomerization through a 1-ps application of a potential that destabilizes the 13-cis isomer. The simulation resulted in structures consistent with the J, K, and L intermediates observed in the photocycle of bR548. The results offer an explanation of why an unprotonated retinal Schiff base intermediate, i.e., an M state, is not formed in the bR548 photocycle. The Schiff base nitrogen after photoisomerization of bR548 points to the intracellular rather than to the extracellular site. The simulations suggest also that leakage from the bR548 to the bR568 cycle arises due to an initial 13-cis,15-anti-->all-trans,15-anti photoisomerization.  相似文献   

9.
In dark-adapted bacteriorhodopsin (bR) the retinal moiety populates two conformers: all-trans and (13,15)cis. Here we examine factors influencing the thermodynamic equilibrium and conformational transition between the two forms, using molecular mechanics and dynamics calculations. Adiabatic potential energy mapping indicates that whereas the twofold intrinsic torsional potentials of the C13==C14 and C15==N16 double bonds favor a sequential torsional pathway, the protein environment favors a concerted, bicycle-pedal mechanism. Which of these two pathways will actually occur in bR depends on the as yet unknown relative weight of the intrinsic and environmental effects. The free energy difference between the conformers was computed for wild-type and modified bR, using molecular dynamics simulation. In the wild-type protein the free energy of the (13,15)cis retinal form is calculated to be 1.1 kcal/mol lower than the all-trans retinal form, a value within approximately kBT of experiment. In contrast, in isolated retinal the free energy of the all-trans state is calculated to be 2.1 kcal/mol lower than (13,15)cis. The free energy differences are similar to the adiabatic potential energy differences in the various systems examined, consistent with an essentially enthalpic origin. The stabilization of the (13,15)cis form in bR relative to the isolated retinal molecule is found to originate from improved protein-protein interactions. Removing internal water molecules near the Schiff base strongly stabilizes the (13,15)cis form, whereas a double mutation that removes negative charges in the retinal pocket (Asp85 to Ala; Asp212 to Ala) has the opposite effect.  相似文献   

10.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

11.
FTIR Emission Spectra of Bacteriorhodopsin in a Vibrational Excited-State   总被引:1,自引:0,他引:1  
Vibrational IR-emission spectra of bacteriorhodopsin (bR) were recorded under continuous illumination with visible light at room temperature. They contain selective information about the chromophore, Schiff base, and opsin. The spectral bands were identified by comparing the data with resonance Raman and IR absorption data. The IR-emission spectra were shown to contain a set of bands characteristic for both all-trans (bR568) and 13-cis conformations (K610-like intermediate) simultaneously. Variation of spectral composition and the intensity of visible light illumination influenced the spectral traces and intensity distribution between them. Greater intensity of deformational vibrations suggests distorted retinal structure in the vibrationally excited ground electronic state. The origin of the emitting species of bR is discussed.  相似文献   

12.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were -470 mV for the 13-cis configuration of the retinal Shiff base in bR and -757 mV for the all-trans configuration in H(2)O, and -433 mV for the 13-cis configuration and -742 mV for the all-trans configuration in D(2)O. The solvent isotope effect (DeltaV=V(D(2)O)-V(H(2)O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated C=N part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were -507 mV for the 13-cis configuration and -788 mV for the all-trans configuration; and for the E204Q mutant they were -491 mV for the 13-cis configuration and -769 mV for the all-trans configuration. Replacement of the Glu(194) or Glu(204) residues by Gln weakened the electron withdrawing interaction to the protonated C=N bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were -471 mV for the 13-cis configuration and -760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the C=N part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

13.
We present a comparative study of the ultrafast photophysics of all-trans retinal in the protonated Schiff base form in solvents with different polarities and viscosities. Steady-state spectra of retinal in the protonated Schiff base form show large absorption-emission Stokes shifts (6500-8100 cm(-1)) for both polar and nonpolar solvents. Using a broadband fluorescence up-conversion experiment, the relaxation kinetics of fluorescence is investigated with 120 fs time resolution. The time-zero spectra already exhibit a Stokes-shift of approximately 6000 cm(-1), indicating depopulation of the Franck-Condon region in < or =100 fs. We attribute it to relaxation along skeletal stretching. A dramatic spectral narrowing is observed on a 150 fs timescale, which we assign to relaxation from the S(2) to the S(1) state. Along with the direct excitation of S(1), this relaxation populates different quasistationary states in S(1), as suggested from the existence of three distinct fluorescence decay times with different decay associated spectra. A 0.5-0.65 ps decay component is observed, which may reflect the direct repopulation of the ground state, in line with the small isomerization yield in solvents. Two longer decay components are observed and are attributed to torsional motion leading to photo-isomerization. The various decay channels show little or no dependence with respect to the viscosity or dielectric constant of the solvents. This suggests that in the protein, the bond selectivity of isomerization is mainly governed by steric effects.  相似文献   

14.
Previous solid state 13C-NMR studies of bacteriorhodopsin (bR) have inferred the C = N configuration of the retinal-lysine Schiff base linkage from the [14-13C]retinal chemical shift (1-3). Here we verify the interpretation of the [14-13C]-retinal data using the [epsilon-13C]lysine 216 resonance. The epsilon-Lys-216 chemical shifts in bR555 (48 ppm) and bR568 (53 ppm) are consistent with a C = N isomerization from syn in bR555 to anti in bR568. The M photointermediate was trapped at pH 10.0 and low temperatures by illumination of samples containing either 0.5 M guanidine-HCl or 0.1 M NaCl. In both preparations, the [epsilon-13C]Lys-216 resonance of M is 6 ppm downfield from that of bR568. This shift is attributed to deprotonation of the Schiff base nitrogen and is consistent with the idea that the M intermediate contains a C = N anti chromophore. M is the only intermediate trapped in the presence of 0.5 M guanidine-HCl, whereas a second species, X, is trapped in the presence of 0.1 M NaCl. The [epsilon-13C]Lys-216 resonance of X is coincident with the signal for bR568, indicating that X is either C = N anti and protonated or C = N syn and deprotonated.  相似文献   

15.
The elucidation of the physical principles that govern the folding and stability of membrane proteins is one of the greatest challenges in protein science. Several insights into the folding of α-helical membrane proteins have come from the investigation of the conformational equilibrium of H. halobium bacteriorhodopsin (bR) in mixed micelles using SDS as a denaturant. In an effort to confirm that folded bR and SDS-denatured bR reach the same conformational equilibrium, we found that bR folding is significantly slower than has been previously known. Interrogation of the effect of the experimental variables on folding kinetics reveals that the rate of folding is dependent not only on the mole fraction of SDS but also on the molar concentrations of mixed micelle components, a variable that was not controlled in the previous study of bR folding kinetics. Moreover, when the molar concentrations of mixed micelle components are fixed at the concentrations commonly employed for bR equilibrium studies, conformational relaxation in the transition zone is slower than hydrolysis of the retinal Schiff base. As a result, the conformational equilibrium between folded bR and SDS-denatured bR cannot be achieved under the conventional condition. Our finding suggests that the molar concentrations of mixed micelle components are important experimental variables in the investigation of the kinetics and thermodynamics of bR folding and should be accounted for to ensure the accurate assessment of the conformational equilibrium of bR without the interference of retinal hydrolysis.  相似文献   

16.
The absorption maximum (568 nm) of light-adapted bacteriorhodopsin bR568 undergoes reversible changes after acidification. At pH 2.9, the absorption shifts to 605 nm (forming bR605) and it blue shifts to 565 nm, after further acidification to pH approximately 0.5 (forming bR565). Molecular models accounting for such acid-induced changes are relevant to the structure and function of bacteriorhodopsin. In the present study we approached the problem by applying artificial bR pigments based on selectively modified synthetic retinals. This may allow direct identification of the specific regions in the retinal binding site where the above changes in the protein-retinal interactions take place. We investigated the spectroscopic effects of acid in a variety of artificial pigments, including cyaninelike retinals, retinals bearing bulky groups at C4, short polyenes, and retinals in which the beta-ionone ring was substituted by aromatic rings. The results provide direct evidence for the hypothesis that the generation of bR605 is due to changes in polyene-opsin interactions in the vicinity of the Schiff base linkage. The second transition (to bR565) was not observed in artificial pigments bearing major changes in the ring structure of the retinal. Two approaches accounting for this observation are presented. One argues that the generation of bR565 is associated with acid-induced changes in retinal-protein interactions in the vicinity of the retinal ring. The second involves changes in polyene-opsin interactions in the vicinity of the Schiff base linkage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Zadok U  Asato AE  Sheves M 《Biochemistry》2005,44(23):8479-8485
The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.  相似文献   

18.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

19.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

20.
Bacteriorhodopsin (bR) and halorhodopsin (hR) are light-induced ion pumps in the cell membrane of Halobacterium salinarium. Under normal conditions bR is an outward proton transporter, whereas hR is an inward Cl- transporter. There is strong evidence that at very low pH and in the presence of Cl-, bR transports Cl- ions into the cell, similarly to hR. The chloride pumping activity of bR is connected to the so-called acid purple state. To account for the observed effects in bR a tentative complex counterion was suggested for the protonated Schiff base of the retinal chromophore. It would consist of three charged residues: Asp-85, Asp-212, and Arg-82. This quadruplet (including the Schiff base) would also serve as a Cl- binding site at low pH. We used Fourier transform infrared difference spectroscopy to study the structural changes during the transitions between the normal, acid blue, and acid purple states. Asp-85 and Asp-212 were shown to participate in the transitions. During the normal-to-acid blue transition, Asp-85 protonates. When the pH is further lowered in the presence of Cl-, Cl- binds and Asp-212 also protonates. The binding of Cl- and the protonation of Asp-212 occur simultaneously, but take place only when Asp-85 is already protonated. It is suggested that HCl is taken up in undissociated form in exchange for a neutral water molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号