首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photochemical reaction dynamics of the primary events in recombinant bacteriorhodopsin (bRrec) was studied by femtosecond laser absorption spectroscopy with 25-fs time resolution. bRrec was produced in an Escherichia coli expression system. Since bRrec was prepared in a DMPC–CHAPS micelle system in the monomeric form, its comparison with trimeric and monomeric forms of the native bacteriorhodopsin (bRtrim and bRmon, respectively) was carried out. We found that bRrec intermediate I (excited state of bR) was formed in the range of 100 fs, as in the case of bRtrim and bRmon. Further processes, namely the decay of the excited state I and the formation of intermediates J and K of bRrec, occurred more slowly compared to bRtrim, but similarly to bRmon. The lifetime of intermediate I, judging from the signal of ΔA ESA(470-480 nm), was 0.68 ps (78%) and 4.4 ps (22%) for bRrec, 0.52 ps (73%) and 1.7 ps (27%) for bRmon, and 0.45 ps (90%) and 1.75 ps (10%) for bRtrim. The formation time of intermediate K, judging from the signal of ΔA GSA(625-635 nm), was 13.5 ps for bRrec, 9.8 ps for bRmon, and 4.3 ps for bRtrim. In addition, there was a decrease in the photoreaction efficiency of bRrec and bRmon as seen by a decrease in absorbance in the differential spectrum of the intermediate K by ~14%. Since photochemical properties of bRrec are similar to those of the monomeric form of the native protein, bRrec and its mutants can be considered as a basis for further studies of the mechanism of bacteriorhodopsin functioning.  相似文献   

2.
The photochemical behaviour of an analogous bacteriorhodopsin (9,12-Ph-BR) which contains the sterically fixed 9,12-phenylretinal has been investigated with picosecond spectroscopy. The following results have been obtained. No ground-state intermediate photoproduct is found in agreement with the previous observation that 9,12-Ph-BR does not exhibit proton pumping under illumination. The excited singlet state has a lifetime of τS = 10 ± 2 ps. This lifetime agrees favourably with the value calculated from the radiative lifetime τrad = 6.2 ns and the fluorescence quantum efficiency of 1.2·10−3. Excited-state absorption occurs which results in fluorescence in the ultraviolet region. These various observations differ drastically from the corresponding findings on bacteriorhodopsin. Most important for an understanding of the differences is the fact that 9,12-phenylretinal does not isomerize in the protein's binding site in contrast to retinal. Our data therefore suggest that the formation of the intermediate K observed in bacteriorhodopsin is accompanied by the all-trans to 13-cis isomerization.  相似文献   

3.
Seed coat soybean peroxidase (SBP) belongs to class III of the plant peroxidase super family. The protein has a very similar 3-dimensional structure with that of horseradish peroxidase (HRP-C). The fluorescence characteristics of the single tryptophan (Trp117) present in SBP and apo-SBP have been studied by steady-state and pico-second time-resolved fluorescence spectroscopy. Fluorescence decay curve of SBP was best described by a four exponential model that gave the lifetimes, 0.035 ns (97.0%), 0.30 ns (2.0%), 2.0 ns (0.8%), and 6.3 ns (0.2%). These lifetime values agreed very well with the values obtained by the model independent maximum entropy method (MEM). The three longer lifetimes that constituted 3% of the fluorophore population in the SBP sample are attributed to the presence of trace quantities of apo-SBP. The pico-second lifetime value of SBP is indicative of efficient energy transfer from Trp117 to heme. From fluorescence resonance energy transfer (FRET) calculations, the energy-transfer efficiency in SBP is found to be relatively higher as compared to HRP-C and is attributed mainly to the higher value of orientation factor, kappa(2) for SBP. Decay-associated spectra of SBP indicated that the tryptophan of SBP is relatively more solvent exposed as compared to HRP-C and is attributed to the various structural features of SBP. Linear Stern-Volmer plots obtained from the quenching measurements using acrylamide gave k(q) = 5.4 x 10(8) M(-1) s(-1) for SBP and 7.2 x 10(8) M(-1) s(-1) for apo-SBP and indicated that on removal of heme in SBP, Trp117 is more solvent exposed.  相似文献   

4.
Steady state and time-resolved fluorescence studies on native, desulpho and deflavo xanthine oxidase (XO) have been carried out to investigate the conformational changes associated with the replacement of the molybdenum double bonded sulphur by oxygen and the removal of the flavin adenine dinucleotide (FAD). The steady state quenching experiments of the intrinsic tryptophan residues of the enzyme show that all the nine tryptophans are accessible to neutral quencher, acrylamide, in the native as well as desulpho and deflavo enzymes. However, the number of the tryptophan residues accessible to the ionic quenchers, potassium iodide and cesium chloride, increases upon removal of the FAD centre from the enzyme. This indicates that two tryptophan residues move out from the core of the enzyme to the solvent upon the removal of the FAD. The time-resolved fluorescence studies were carried out on the native, desulpho and deflavo XO by means of the time-correlated single photon counting technique, and the data were analysed by discrete exponential and maximum entropy methods. The results show that the fluorescence decay curve fitted best to a three-exponential model with lifetimes tau(1)=0.4, tau(2)=1.4 and tau(3)=3.0 ns for the native and desulpho XO, and tau(1)=0.7, tau(2)=1.7 and tau(3)=4.8 ns for the deflavo XO. The replacement of the molybdenum double bonded sulphur by oxygen in the desulpho enzyme does not cause any significant change of the lifetime components. However, removal of the FAD centre causes a significant change in the shortest and longest lifetime components indicating a conformational change in the deflavo XO possibly in the flavin domain. Decay-associated emission spectra at various emission wavelengths have been used to determine the origin of the lifetimes. The results show that tau(1) and tau(3) of the native and desulpho XO originate from the tryptophan residues which are completely or partially accessible to the solvent but tau(2) corresponds to those residues which are buried in the core of the enzyme and not exposed to the solvent. For deflavo enzyme, tau(2) is red shifted compared to the native enzyme indicating the movement of tryptophan residues from the core of the enzyme to the solvents.  相似文献   

5.
The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52 degrees C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures.  相似文献   

6.
It was shown that the substitution of the CF3 group in the structure of retinal for the methyl group at C13 causes not only a decrease in the affinity of the proton for the nitrogen in the Schiff base (pK ~ 8.4) but also considerably changes the photochemical properties of the bacteriorhodopsin analog. At pH > 6.5, the rate of the Schiff base reprotonation during M decay depends on the proton concentration in the medium. In the photocycle of the yellow M-like form with the deprotonated Schiff base, a long-wavelength product absorbing at 625 nm is formed, which has a similar pH dependence of decay kinetics. The two processes also have similar activation energies (about 15 ± 1 kcal/mol). It is concluded that both cases involve proton transfer from an aqueous medium through the donor part of the channel to the Schiff base and Asp96, respectively. In the analog, however, the structure of water molecules necessary for the stabilization of the proton on the Schiff base is broken. As a result, dehydration of the preparation gives rise to a fraction of M-like form of bacteriorhodopsin with the deprotonated Schiff base.  相似文献   

7.
8.
Using measurements of the kinetics of chlorophyll a fluorescence emission, we have investigated the development of the photosynthetic membrane during etioplast-to-chloroplast differentiation. The chlorophyll fluorescence decay kinetics of pea chloroplasts from plants grown under intermittent (2 min light-118 min dark) and continuous light regimes were monitored with a single-photon timing system with picosecond resolution. We have associated the changes in the fluorescence yields and decay kinetics with known structural and organizational developmental phenomena in the chloroplast. This correlation provides a more detailed assignment of the origins of the fluorescence decay components than has been previously obtained by studying only mature chloroplasts. In particular, our analysis of the variable kinetics and multiexponential character of the fluorescence emission during thylakoid development focuses on the organization of photosynthetic units and the degree of communication between reaction centers in the same photosystem. Our results further demonstrate that the age of etiolated tissue is critical to plastid development.  相似文献   

9.
I Rousso  N Friedman  A Lewis    M Sheves 《Biophysical journal》1997,73(4):2081-2089
The experiments reported in this paper, based on reconstitution of bacteriorhodopsin (bR) from apomembrane at varying environmental conditions, demonstrate that the presence of water is a controlling factor in generating a native wild-type bR conformation. If water is lacking during this reconstitution process, then a non-native bR structure is formed that exhibits altered M formation and decay kinetics, as well as different behavior following extensive dehydration. It is shown that mutants affecting the ability of bR to form appropriate structures of water in specific protein cavities also affect the ability to generate a native bR conformation. The results suggest that aspartic acid 96 plays a major role in anchoring the appropriate water structure conformation associated with bR. It is also demonstrated that the glutamic acid 204 residue is pivotal in controlling the protein/water affinity. This water affinity can be further controlled by modifying the charge environment of the protein with altered pH. These data, based on kinetic absorption spectroscopy and Fourier transform infrared spectroscopy, highlight the central role of water in this protein.  相似文献   

10.
We have investigated the role of the native lipids on bacteriorhodopsin (bR) proton transfer and their connection with the cation-binding role. We observe that both the efficiency of M formation and the kinetics of M rise and decay depend on the lipids and lattice but, as the lipids are removed, the cation binding is a much less important factor for the proton pumping function. Upon 75% delipidation using 3-[(cholamidopropyl)dimethylammonio]-propanesulfonate (CHAPS), the M formation and decay kinetics are much slower than the native, and the efficiency of M formation is approximately 30%-40% that of the native. Upon monomerization of bR by Trition X-100, the efficiency of M recovers close to that of the native (depending on pH), M formation is approximately 10 times faster, and M decay kinetics are comparable to native at pH 7. The same results on the M intermediate are observed if deionized blue bR (deI bbR) is treated with these detergents (with or without pH buffers present), even though deionized blue bR containing all the lipids has no photocycle. This suggests that the cation(s) has a role in native bR that is different than in delipidated or monomerized bR, even so far as to suggest that the cation(s) becomes unimportant to the function as the lipids are removed.  相似文献   

11.
The fluorescence decays of barley chloroplasts have been measured by single-photon counting with tunable picosecond dye laser excitation. The fluorescence decays of dark-adapted chloroplasts are best fitted to a sum of three exponential lifetime components with lifetimes of 112, 380 and 2214 ps. The relative magnitude of each component is shown to be dependent on the excitation wavelength and collected emission wavelength. The excitation wavelength dependence is correlated with the Photosystem (PS) I and PS II action study of Ried [36] and with the measured pigment distributions in the photosynthetic unit [37,41]. Experiments varying the single excitation pulse intensity from 108 to 1012 photons/cm2 pulse show that our results are not distorted by singlet-singlet annihilation. Unflowed samples where the cloroplasts are under constant illumination show 2-fold increases in quantum yield of fluorescence primarily in the two longer lifetime components. Theoretical calculations of Shipman [31] on an isolated reaction center with a homogeneous antenna are discussed and the principles extended to discussion of the measured barley chloroplast fluorescence decay components in terms of photosynthetic unit light-harvesting array models and earlier experimental work. Our data support a photosynthetic unit model in which 70–90% of the photons absorbed are quenched by either PS I or efficiently quenching PS II in a process where the fluorescence lifetime is 100 ps. The origin of the intermediate 380 ps. component is probably due to excitation transfer to a PS II reaction center in a redox state which quenches less efficiently.  相似文献   

12.
With the aim of preparing a light-insensitive bacteriorhodopsin-like pigment, bacterio-opsin expressed in Escherichia coli was treated in phospholipid-detergent micelles with the retinal analog II, in which the C13-C14 trans-double bond cannot isomerize due to inclusion in a cyclopentene ring. The formation of a complex with a fine structure (lambda max, 439 nm) was first observed. This partially converted over a period of 12 days to a bacteriorhodopsin-like chromophore (ebR-II) with lambda max, 555 nm. An identical behavior has been observed previously upon reconstitution of bleached purple membrane with the analog II. Purification by gel filtration gave pure ebR-II with lambda max, 558 nm, similar to that of light-adapted bacterio-opsin reconstituted with all-trans retinal (ebR-I). Spectrophotometric titration of ebR-II as a function of pH showed that the purple to blue transition of bacteriorhodopsin at acidic pH was altered, and the apparent pKa of Schiff base deprotonation at alkaline pH was lowered by 2.4 units, relative to that of ebR-I. ebR-II showed no light-dark adaptation, no proton pumping, and no intermediates characteristic of the bacteriorhodopsin photocycle. In addition, the rates of reaction with hydroxylamine in the dark and in the light were similar. These results show, as expected, that isomerization of the C13-C14 double bond is required for bacteriorhodopsin function and that prevention of this isomerization confers light insensitivity.  相似文献   

13.
The impact of varying excitation densities (approximately 0.3 to approximately 40 photons per molecule) on the ultrafast fluorescence dynamics of bacteriorhodopsin has been studied in a wide spectral range (630-900 nm). For low excitation densities, the fluorescence dynamics can be approximated biexponentially with time constants of <0.15 and approximately 0.45 ps. The spectrum associated with the fastest time constant peaks at 650 nm, while the 0.45 ps component is most prominent at 750 nm. Superimposed on these kinetics is a shift of the fluorescence maximum with time (dynamic Stokes shift). Higher excitation densities alter the time constants and their amplitudes. These changes are assigned to multi-photon absorptions.  相似文献   

14.
Single-molecule detection (SMD) with fluorescence is a widely used microscopic technique for biomolecule structure and function characterization. The modern light microscope with high numerical aperture objective and sensitive CCD camera can image the brightly emitting organic and fluorescent protein tags with reasonable time resolution. Single-molecule imaging gives an unambiguous bottom-up biomolecule characterization that avoids the "missing information" problem characteristic of ensemble measurements. It has circumvented the diffraction limit by facilitating single-particle localization to ~1 nm. Probes developed specifically for SMD applications extend the advantages of single-molecule imaging to high probe density regions of cells and tissues. These applications perform under conditions resembling the native biomolecule environment and have been used to detect both probe position and orientation. Native, high density SMD may have added significance if molecular crowding impacts native biomolecule behavior as expected inside the cell.  相似文献   

15.
M D Hirsch  M A Marcus  A Lewis  H Mahr    N Frigo 《Biophysical journal》1976,16(12):1399-1409
We have measured the emission lifetime of bacteriorhodopsin at physiological temperatures to be 15 +/- 3 ps using a technique which employs a mode-locked dye laser, a sum frequency light gate, and a continuous flow system. We observe no concentration dependence of the lifetime over the range of 1.1 X 10(-4) M to 1.0 X 10(-5) M. We conclude that the emission which we observe comes from bacteriorhodopsin and not one of its photochemically produced intermediates, and that the emission cannot originate from the state into which light is absorbed.  相似文献   

16.
Bacteriorhodopsin was continuously excited with green background light. In this way a steady state distribution of all intermediates of the photocycle was obtained. Then a perturbation of the system was induced by a blue laser flash and the resulting absorption changes were measured. The experiments were done with native bacteriorhodopsin and with the point mutant BR Asp96Asn , in which aspartate 96 is changed to asparagine. Blue light induced relaxation experiments revealed a rate constant belonging to the excitation of bacteriorhodopsin by the green background. With this rate constant the quantum efficiency of native bacteriorhodopsin and of BR Asp96Asn was determined to be 0.60 ± 0.10. Signals obtained with native bacteriorhodopsin could be explained with a simple model of the photocycle consisting of three consecutive intermediates BR 568, L 550 and M 412. To describe the behavior of BR Asp96Asn , a further photoactive intermediate after the M 412 state had to be postulated. Properties of this intermediate are similar to those of the N 550 state.  相似文献   

17.
We have carried out a picosecond fluorescence study of holo- and apoazurins of Pseudomonas aeruginosa (azurin Pae), Alcaligenes faecilis (azurin Afe), and Alcaligenes denitrificans (azurin Ade). Azurin Pae contains a single, buried tryptophyl residue; azurin Afe, a single surface tryptophyl residue; and azurin Ade, tryptophyl residues in both environments. From anisotropy measurements we conclude that the interiors of azurins Pae and Ade are not mobile enough to enable motion of the indole ring on a nanosecond time scale. The exposed tryptophans in azurins Afe and Ade show considerable mobility on a few hundred picosecond time scale. The quenching of tryptophan fluorescence observed in the holoproteins is interpreted in terms of electron transfer from excited-state tryptophan to Cu(II). The observed rates are near the maximum predicted by Marcus theory for the separation of donor and acceptor. The involvement of protein matrix and donor mobility for electron transfer is discussed. The two single-tryptophan-containing proteins enable the more complex fluorescence behavior of the two tryptophans of azurin Ade to be understood. The single-exponential fluorescence decay observed for azurin Pae and the nonexponential fluorescence decay observed for azurin Afe are discussed in terms of current models for tryptophan photophysics.  相似文献   

18.
EET between the two circular bacteriochlorophyll compartments B800 and B850 in native (containing the carotenoid rhodopin) and carotenoidless LH2 isolated from the photosynthetic purple sulfur bacterium Allochromatium minutissimum was investigated by femtosecond time-resolved transient absorption spectroscopy. Both samples were excited with 120-fs laser pulses at 800 nm, and spectral evolution was followed in the 720-955 nm range at different delay times. No dependence of transient absorption in the B800 band on the presence of the carotenoid rhodopin was found. Together with the likewise virtually unchanged absorption spectra in the bacteriochlorophyll Qy region, these observations suggest that absence of rhodopin does not significantly alter the structure of the pigment-protein complex including interactions between bacteriochlorophylls. Apparently, rhodopin does also not accelerate B800 to B850 EET in LH2, contrary to what has been suggested previously. Moreover, “carotenoid-catalyzed internal conversion” can also be excluded for the bacteriochlorophylls in LH2 of A. minutissimum. Together with previous results obtained with two-photon fluorescence excitation spectroscopy, it can also be concluded that there is neither EET from rhodopin to B800 nor (back-)EET from B800 to rhodopin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号