首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.  相似文献   

2.
Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.  相似文献   

3.
4.
Medulloblastoma biopsies are heterogenous and might contain normal brain tissue, which limits the usefulness of such tumor material for biochemical analyses. We have, therefore, examined the gangliosides and their metabolism using the medulloblastoma cell lines. Daoy and D341 Med, cultured both in vitro and as xenografts in nude mice. The ganglioside patterns in the Daoy showed a switch from a high GM2, 70% (mol% of total ganglioside sialic acid) and low lactoseries gangliosides (2%) content in monolayer cultures, to a high proportion of lactoseries gangliosides (50%) and virtually no GM2 (1%) in xenografts, but an increased proportion of other a-series gangliosides. The D341 Med showed a similar change regarding the lacto-series gangliosides from 1% in suspension culture to 10% in xenografts. The activity of five glycosyltransferases, GM3, GD3, GM2, GM1 and LA2 synthases, did not parallel the ganglioside patterns and could not account for the noted variations therein. In the Daoy cell line the LA2 synthase as well as the GM2 synthase activity was relatively high in both culture systems, despite the marked difference in the expression of GM2 and the lactoseries gangliosides. These results suggest that environmental factors play a crucial role for the in vivo activity of the glycosyltransferases.  相似文献   

5.
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.  相似文献   

6.
The enzymatic basis for ganglioside regulation during differentiation of NG108-15 mouse neuroblastoma x rat glioma hybrid cells was studied. This cell line contains four gangliosides that lie along the same biosynthetic pathway: GM3, GM2, GM1, and GD1a. Chemically induced neuronal differentiation of NG108-15 cells led to an 80% drop in the steady-state level of their major ganglioside, GM3, a sixfold increase in the level of a minor ganglioside, GM2 (which became the predominant ganglioside of differentiated cells); and relatively little change in the levels of GM1 and GD1a, which lie further along the same biosynthetic pathway. The enzymatic basis for this selective change in ganglioside expression was investigated by measuring the activity of two glycosyltransferases involved in ganglioside biosynthesis. UDP-N-acetylgalactosamine: GM3 N-acetylgalactosaminyltransferase (GM2-synthetase) activity increased fivefold during butyrate-induced differentiation, whereas UDP-galactose: GM2 galactosyltransferase (GM1-synthetase) activity decreased to 10% of its control level. Coordinate regulation of these two glycosyltransferases appears to be primarily responsible for the selective increase of GM2 expression during NG108-15 differentiation.  相似文献   

7.
Ha KT  Lee YC  Cho SH  Kim JK  Kim CH 《Molecules and cells》2004,17(2):267-273
Endogenous expression of human membrane type ganglioside sialidase (Neu3) was examined in various cell lines including NB-1, U87MG, SK-MEL-2, SK-N-MC, HepG2, Hep3B, Jurkat, HL-60, K562, ECV304, Hela and MCF-7. Expression was detected in the neuroblastoma cell lines NB-1 and SK-N-MC, and also in erythroleukemia K562 cells, but not in any other cells. We isolated a Neu3 cDNA from K562 cells and expressed a His-tagged derivative in a bacterial expression system. The purified recombinant product of approximately 48 kDa had sialidase activity toward 4-methyl-umbelliferyl-alpha-D-N-acetylneuraminic acid (4MU-NeuAc). The optimal pH of the purified Neu3 protein for GD3 ganglioside was 4.5. The enzyme also efficiently hydrolyzed GD3, GD1a, GD1b and GM3 whereas sialyllactose, 4MU-NeuAc, GM1 and GM2 were poor substrates, and it had no activity against sialylated glycoproteins such as fetuin, transferrin and orosomucoid. We conclude that the sialidase activity of Neu3 is specific for gangliosides.  相似文献   

8.
Gangliosides such as GD3, GM2, and GD2 are abundantly expressed on the cell surfaces of various malignant cells, suggesting the potential for anti-ganglioside antibody therapy for tumors. Anti-ganglioside GD2 antibody treatment is currently undergoing clinical trials for melanoma and neuroblastoma. We previously reported high in vivo antitumor effects of anti-GM2 ganglioside antibody against lung cancer. To determine whether anti-GM2 antibody may be clinically indicated for gastrointestinal cancers, we evaluated the mRNA expression of alpha2,8 sialyltransferase, a GD3 synthase, and beta1,4 N-acetylgalactosaminyltransferase (beta1,4 GalNAc-T), a GM2/GD2 synthase, in gastrointestinal cancers. We performed modified semi-quantitative RT-PCR, which reduces complexity incidental to radiolabeling on samples taken from small surgically removed clinical specimens. Stomach (19/22) and colorectal (21/30) cancers showed decreased expression of alpha2,8 sialyltransferase as compared with respective normal tissues (P < 0.05). In contrast, increased expression of beta1,4 GalNAc-T was detected in both types of tumors. Clinicopathological analysis revealed significantly higher expression level of alpha2,8 sialyltransferase in the poorly differentiated than in the well-differentiated stomach cancer group (P < 0.05). Furthermore, the expression level of alpha2,8 sialyltransferase was significantly decreased in male as compared with female colorectal cancer patients (P < 0.05). These results suggest that expression level of GM2 ganglioside is elevated in gastrointestinal cancer, and that anti-GM2 antibody may be applicable to its treatment.  相似文献   

9.
Roles for UDP-GlcNAc 2-epimerase/ManNAc 6-kinase (GNE) beyond controlling flux into the sialic acid biosynthetic pathway by converting UDP-GlcNAc to N-acetylmannosamine are described in this report. Overexpression of recombinant GNE in human embryonic kidney (HEK AD293) cells led to an increase in mRNA levels for ST3Gal5 (GM3 synthase) and ST8Sia1 (GD3 synthase) as well as the biosynthetic products of these sialyltransferases, the GM3 and GD3 gangliosides. Conversely, down-regulation of GNE by RNA interference methods had the opposite, but consistent, effect of lowering ST3Gal5 and ST8Sia1 mRNAs and reducing GM3 and GD3 levels. Control experiments ensured that GNE-mediated changes in sialyltransferase expression and ganglioside biosynthesis were not the result of altered flux through the sialic acid pathway. Interestingly, exogenous GM3 and GD3 also changed the expression of GNE and led to reduced ST3Gal5 and ST8Sia1 mRNA levels, demonstrating a reciprocating feedback mechanism where gangliosides regulate upstream biosynthetic enzymes. Cellular responses to the GNE-mediated changes in ST3Gal5 and ST8Sia1 expression and GM3 and GD3 levels were investigated next. Conditions that led to reduced ganglioside production (e.g. short hairpin RNA exposure) stimulated proliferation, whereas conditions that resulted in increased ganglioside levels (e.g. recombinant GNE and exogenous gangliosides) led to reduced proliferation with a concomitant increase in apoptosis. Finally, changes to BiP expression and ERK1/2 phosphorylation consistent with apoptosis and proliferation, respectively, were observed. These results provide examples of specific biochemical pathways, other than sialic acid metabolism, that are influenced by GNE.  相似文献   

10.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

11.
Abstract: We examined the immunocytochemical expression of GM3 and QD3 in 3-day-old chick embryo retinal pigment epithelium (RPE) and neural retina (NR). We also compared the composition of gangliosides and the activities of key ganglioside glycosyltransferases of the RPE and NR of 8-, 12-, and 15-day old embryos. The immunocytochemical studies in 3-day-old embryos showed heavy expression of GM3 and GD3 at the inner and outer layers of the optic vesicle that are the precursors of the RPE and NR, respectively. The compositional and enzymatic studies showed pronounced differences between RPE and NR of 8-day and older embryos. HPTLC showed that at 8 days the major species were GM3 and GD3 in RPE and GD3 and GT3 in NR. As development proceeded, GD3 decreased in both tissues, GM3 became the major ganglioside in RPE, and ganglio-series gangliosides (mainly GD1a) became the major species in NR. At 15 days the major species were GD1 a in NR and GM3 in RPE. Enzyme determinations showed that whereas in RPE from 12-day-old embryos GM2 synthase was under the limit of detection and GD3 synthase activity was about sixfold lower than GM3 synthase, in NR the activities of GM3 and GD3 synthases were similar and both six-to ninefold lower than GM2 synthase. These results evidence a markedly different modulation of the ganglioside glycosylating system in cells of a common origin that through distinct differentiation pathways originate two closely related tissues of the optic system. In addition, they reinforce the relevance of the relative activities of key transferases in determining the pattern of gangliosides in different cell types.  相似文献   

12.
Gangliosides of the plasma membrane are important modulatorsof cellular functions. Previous work from our laboratory hadsuggested that a plasma membrane sialidase was involved in growthcontrol and differentiation in cultured human neuroblastomacells (SK-N-MC), but its substrates had remained obscure. Wenow performed sialidase specificity studies in subcellular fractionsand found ganglioside GM3 desialylating activity in presenceof Triton X-100 to be associated with the plasma membrane, butabsent in lysosomes. This Triton-activated plasma membrane enzymedesialylated also gangliosides GDla, GD1b, and GT1b, therebyforming GM1; cleavage of GM1 and GM2, however, was not observed.Sialidase activity towards the glycoprotein fetuin with modifiedC-7 sialic acids and towards 4-methylumbelliferyl neuraminatewas solely found in lysosomal, but not in plasma membrane fractions. The role of the plasma membrane sialidase in ganglioside desialylationof living cells was examined by following the fate of [3H]galactose-labelledindividual gangliosides in pulse-chase experiments in absenceand presence of the extracellular sialidase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminicacid. When the plasma membrane sialidase was inhibited, radioactivityof all gangliosides chased at the same rate. In the absenceof inhibitor, GM3, GD1a, GD1b, GD2, GD3 and GT1b were degradedat a considerably faster rate in confluent cultures, whereasthe GM1-pool seemed to be filled by the desialylation of highergangliosides. The results thus suggest that the plasma membranesialidase causes selective ganglioside desialylation, and thatsuch surface glycolipid modification triggers growth controland differentiation in human neuroblastoma cells. ganglioside neuroblastoma cells plasma membrane sialidase  相似文献   

13.
Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.  相似文献   

14.
Several lines of transgenic mice with gangliosides GM2/GD2 synthasegene were established, and the expression levels of the transgenein brain, liver, spleen and thymus were analyzed by comparingwith those in their litter mates. Among four tissues, brainand skin showed markedly high expression levels of the transgenein Northern blotting. Particularly, transgenic mice skin showedabout 10-fold higher expression of GM2/GD2 synthase gene thanthe wild type mice skin. Therefore, alterations in the morphology,glycolipid components, and responses to the exogenous stimulationsin the transgenic mice skin were examined. Gangliosides in thetransgenic skin were dramatically converted from GM3 to GM1,whereas no morphological changes were observed. However, whenskin flap test was performed with insertion of nylon membranesunder the skin flaps, much stronger inflammatory reactions consistingof edema, marked thickness, and cell infiltration were observedin the transgenic mice compared with the wild type. Similarenhanced inflammatory reaction was also observed in the skininjected by silicon gel, and in the peritoneal reaction to theinjected casein. Main cell population in these inflammatoryreactions consisted of neutrophils, suggesting an increasedsensitivity of neutrophils to chemo-tactic factors in the transgenicmice. ganglioside glycosyltransferase GM2 GD2 synthase skin transgenic mouse  相似文献   

15.
The frequently occurring alteration of ganglioside expression in tumor cells has been implicated to play a role in the uncontrolled growth of these cells; antibodies to such gangliosides might affect tumor cell growth. We have studied the effect of IgM monoclonal antibodies to two glioma-associated gangliosides, GD3 and GM2, on cell proliferation of four human glioma cell lines and one renal tumor cell line. Of the two anti-ganglioside antibodies tested, only the anti-GD3 antibody resulted in a significant (p<0.005) inhibition of cell proliferation as measured by thymidine incorporation and Brd-U labeling, after 24[emsp4 ]h incubation. The effect was not dependent on any serum factor and no increased cell death was observed. All cell lines contained higher or similar amounts of GM2 than GD3, and both antigens were shown to be expressed on the cell surface and accessible to antibodies. The selective effect of anti-GD3 antibodies as contrasted to the inactivity of anti-GM2 antibodies suggests a possible role for ganglioside GD3 in tumor cell proliferation.  相似文献   

16.
The genetic (stable overexpression of sialyltransferase I, GM3 synthase) or pharmacological (selective pressure by N-(4-hydroxyphenyl)retinamide)) manipulation of A2780 human ovarian cancer cells allowed us to obtain clones characterized by higher GM3 synthase activity compared with wild-type cells. Clones with high GM3 synthase expression had elevated ganglioside levels, reduced in vitro cell motility, and enhanced expression of the membrane adaptor protein caveolin-1 with respect to wild-type cells. In high GM3 synthase-expressing clones, both depletion of gangliosides by treatment with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and silencing of caveolin-1 by siRNA were able to strongly increase in vitro cell motility. The motility of wild-type, low GM3 synthase-expressing cells was reduced in the presence of a Src inhibitor, and treatment of these cells with exogenous gangliosides, able to reduce their in vitro motility, inactivated c-Src kinase. Conversely, ganglioside depletion by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol treatment or caveolin-1 silencing in high GM3 synthase-expressing cells led to c-Src kinase activation. In high GM3 synthase-expressing cells, caveolin-1 was associated with sphingolipids, integrin receptor subunits, p130(CAS), and c-Src forming a Triton X-100-insoluble noncaveolar signaling complex. These data suggest a role for gangliosides in regulating tumor cell motility by affecting the function of a signaling complex organized by caveolin-1, responsible for Src inactivation downstream to integrin receptors, and imply that GM3 synthase is a key target for the regulation of cell motility in human ovarian carcinoma.  相似文献   

17.
Exposure of mouse neuroblastoma cell line N4TGl to opiates or [D-Ala2,D-Leu5] enkephalin produced a naloxone-reversible inhibition of cyclic AMP synthesis and prevented, in a concentration-dependent manner, the formation of both ganglioside GM2 (GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM3 (NeuNAc-Gal-Glc-ceramide) and ganglioside GM1 (Gal-GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM2 in cell-free extracts. In contrast, the receptor-mediated elevation of intracellular cyclic AMP levels by agents such as prostaglandin E1 (in the presence of isobutylmethylxanthine) or the addition of the cyclic AMP derivatives (dibutyryl cyclic AMP) markedly stimulated the activities of UDP-GalNAc:GM3,N-acetylgalactosaminyltransferase and UDP-Gal:GM2,galactosyltransferase. An overall increase in the synthesis of gangliosides more complex than GM3 was also observed in the mouse neuroblastoma x hamster brain explant hybrid cell line NCB-20 following elevation of cyclic AMP levels by treatment with serotonin and pargyline. The data presented support the hypothesis that cyclic AMP may have a role in the regulation of sialoglycosphingolipid biosynthesis.  相似文献   

18.
The activities of five glycolipid-glycosyltransferases, GL2, GM3, GM2, GM1, and GD1a synthase, were determined in a cell-free system with homogenate protein of total rat liver, isolated hepatocytes, Kupffer cells, and sinusoidal endothelial cells. In rat liver parenchymal and nonparenchymal cells ganglioside synthases were distributed differently. Compared to hepatocytes, Kupffer cells expressed a nearly sevenfold greater activity of GM3 synthase, but only 14% of GM2, 19% of GM1, and 67% of GD1a synthase activity. Sinusoidal endothelial cells expressed a pattern of enzyme activities quite similar to that of Kupffer cells with the exception of higher GM2 synthase activity. Activity of GL2 synthase was distributed unifromly in parenchymal and nonparenchymal cells of rat liver, but differed by sex. It was 1 to 2 orders of magnitude below that of all the other ganglioside synthases investigated. The results indicate GL2 synthase regulates the total hepatic ganglioside content, and hepatocytes but not nonparenchymal liver cells have high enzymatic capacities to form a-series gangliosides more complex than GM3.  相似文献   

19.
Previous studies from our laboratory demonstrated the role of tumor-derived gangliosides as important mediators of T cell apoptosis, and hence, as one mechanism by which tumors evade immune destruction. In this study, we report that TNF-alpha secreted by infiltrating inflammatory cells and/or genetically modified tumors augments tumor-associated GM2 levels, which leads to T cell death and immune dysfunction. The conversion of weakly apoptogenic renal cell carcinoma (RCC) clones to lines that can induce T cell death requires 3-5 days of TNF-alpha pretreatment, a time frame paralleling that needed for TNF-alpha to stimulate GM2 accumulation by SK-RC-45, SK-RC-54, and SK-RC-13. RCC tumor cell lines permanently transfected with the TNF-alpha transgene are similarly toxic for T lymphocytes, which correlates with their constitutively elevated levels of GM2. TNF-alpha increases GM2 ganglioside expression by enhancing the mRNA levels encoding its synthetic enzyme, GM2 synthase, as demonstrated by both RT-PCR and Southern analysis. The contribution of GM2 gangliosides to tumor-induced T cell death was supported by the finding that anti-GM2 Abs significantly blocked T cell apoptosis mediated by TNF-alpha-treated tumor cells, and by the observation that small interfering RNA directed against TNF-alpha abrogated GM2 synthase expression by TNF-transfected SK-RC-45, diminished its GM2 accumulation, and inhibited its apoptogenicity for T lymphocytes. Our results indicate that TNF-alpha signaling promotes RCC-induced killing of T cells by stimulating the acquisition of a distinct ganglioside assembly in RCC tumor cells.  相似文献   

20.
Tumor cell gangliosides are bioactive molecules involved in tumor-host interactions. To investigate their role in tumor formation and angiogenesis, we sought to develop an inhibitory model targeting human GM3 synthase, an essential enzyme in the ganglioside synthesis pathway, by antisense transfection. We prepared a number of transfectants from DAOY human medulloblastoma cells and isolated clones that stably expressed a 560-bp fragment of human GM3 synthase cDNA, in either sense or antisense orientation, as well as clones transfected with an empty vector. Both sense and antisense clones permanently incorporated mammalian expression vectors into their genomes. The DAOY cell clones were screened for ganglioside content using total lipid extraction, ganglioside isolation, and HPTLC. One antisense-transfected clone, 7.2A, in which total ganglioside content was reduced by 70%, was selected for further study. All sense-and sham-transfectants had ganglioside levels not different from that of untransfected DAOY cells. After 10 passages however, while antisense mRNA expression was fully maintained, the ganglioside content of 7.2A cells had reverted to normal levels. Antisense RNA transfection can sometimes have a reversible effect on the expression of a target. Possible regulatory mechanisms of this previously unrecognized process of reversion to wild type phenotype are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号