首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phylogenetic analyses of the leech family Macrobdellidae were accomplished with all nominal species in the family save one. A total of 17 specimens in nine ingroup species were analysed, along with four outgroup taxa. Twenty-two morphological characters based on jaw dentition, sexual anatomy, and external morphology failed to provide a resolution for many of the relationships in the family. DNA sequence data from nuclear 18S rDNA, nuclear 28S rDNA, mitochondrial 12S rDNA, and mitochondrial cytochrome c oxidase subunit I were examined separately and in combination with morphological characters. The resulting combined analysis strongly corroborated the placement of the genus Philobdella within the family Macrobdellidae and as sister to a monophyletic genus Macrobdella , the typical North American medicinal leeches. Furthermore, sequence divergences among these taxa confirmed the existence of two species, Philobdella gracilis and P. floridana , readily distinguishable on the basis of jaw dentition .  相似文献   

2.
Multiple genes and the monophyly of Ischnocera (Insecta: Phthiraptera).   总被引:2,自引:0,他引:2  
Whereas most traditional classifications identify Ischnocera as a major suborder of lice in the order Phthiraptera, a recent molecular study based on one gene did not recover monophyly of Ischnocera. In this study we test the monophyly of Ischnocera using sequences of portions of three different genes: two nuclear (EF1 alpha and 18S) and one mitochondrial (COI). Analysis of EF1 alpha and COI sequences did not recover monophyly of Ischnocera, but these genes provided little support for ischnoceran paraphyly because homoplasy is high among the divergent taxa included in this study. Analysis of 18S sequences recovered ischnoceran monophyly with strong support. Sequences from these three gene regions showed significant conflict with the partition homogeneity test, but this heterogeneity probably arises from the dramatic differences in substitution rates. In support of this conclusion, Kishino-Hasegawa tests of the EF1 alpha and COI genes did not reject several trees containing ischnoceran monophyly. Combined analysis of all three gene regions supported monophyly of Ischnocera, although not as strongly as analysis of 18S by itself. In sum, although rapidly evolving genes can retain some phylogenetic signal for deep phylogenetic relationships, strong support for such relationships is likely to come from more slowly evolving genes.  相似文献   

3.
Complete 18S rDNA sequences and sequences of domain III of mitochondrial 12S rDNA were obtained to assess phylogenetic relationships among major suprageneric taxa of leeches and the possibly closely related clitellate taxa Branchiobdellida and Acanthobdellida. The monophyly of the families Erpobdellidae, Piscicolidae, and Glossiphoniidae, the suborders Erpobdelliformes and Hirudiniformes, and the order Arhynchobdellida have been confirmed by parsimony and maximum likelihood phylogenetic analysis of separate and combined data sets. Both the nuclear 18S rDNA sequences and the mitochondrial 12S rDNA sequences were consistent in not supporting a monophyletic order Rhynchobdellida, represented by the families Piscicolidae and Glossiphoniidae. A topology with the Piscicolidae as the first branch in the leech tree followed by the Glossiphoniidae received the highest support in terms of taxonomic, character, and outgroup congruence. According to this topology, the putative apomorphies of the Rhynchobdellidae (e.g. the proboscis) can be parsimoniously explained as plesiomorphies already present in the ancestral leech. This common ancestor was probably a bloodsucking leech with a proboscis rather than an unspecialized ectocommensal, as suggested by previous hypotheses. During the course of leech evolution, a reduction of the proboscis could have taken place in predatory arhynchobdellid ancestors to enable swallowing of larger prey. A second gain of sanguivory by the jawed Hirudiniformes could have been facilitated by pre-adaptations to ectoparasitic blood feeding. The 18S rDNA analysis further indicates a close relationship between the clitellate groups Branchiobdellida and Acanthobdellida, although this relationship is not strongly supported.  相似文献   

4.
A molecular phylogeny of annelids   总被引:6,自引:0,他引:6  
We present parsimony analyses of annelids based on the largest taxon sample and most extensive molecular data set yet assembled, with two nuclear ribosomal genes (18S rDNA and the D1 region of 28S rDNA), one nuclear protein coding‐gene (Histone H3) and one mitochondrial ribosomal gene (16S rDNA) from 217 terminal taxa. Of these, 267 sequences are newly sequenced, and the remaining were obtained from GenBank. The included taxa are based on the criteria that the taxon must have 18S rDNA or at least two other loci. Our analyses show that 68% of annelid family ranked taxa represented by more than one taxon in our study are supported by a jackknife value > 50%. In spite of the size of our data set, the phylogenetic signal in the deepest part of the tree remains weak and the majority of the currently recognized major polychaete clades (except Amphinomida and Aphroditiformia) could not be recovered. Terbelliformia is monophyletic (with the exclusion of Pectinariidae, for which only 18S data were available), whereas members of taxa such as Phyllodocida, Cirratuliformia, Sabellida and Scolecida are scattered over the trees. Clitellata is monophyletic, although Dinophilidae should possibly be included, and Clitellata has a sister group within the polychaetes. One major problem is the current lack of knowledge on the closest relatives to annelids and the position of the annelid root. We suggest that the poor resolution in the basal parts of the trees presented here may be due to lack of signal connected to incomplete data sets both in terms of terminal and gene sampling, rapid radiation events and/or uneven evolutionary rates and long‐branch attraction. © The Willi Hennig Society 2006.  相似文献   

5.
Cytochrome b and Bayesian inference of whale phylogeny   总被引:2,自引:0,他引:2  
In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the first time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly of all but one family level taxa within Cetacea, and most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.  相似文献   

6.
Relationships among families and suborders of scleractinian corals are poorly understood because of difficulties 1) in making inferences about the evolution of the morphological characters used in coral taxonomy and 2) in interpreting their 240-million-year fossil record. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 16S ribosomal gene from taxa of 14 families of corals and the use of this gene segment in a phylogenetic analysis of relationships within the order. We show that sequences obtained from scleractinians are homologous to other metazoan 16S ribosomal sequences and fall into two distinct clades defined by size of the amplified gene product. Comparisons of sequences from the two clades demonstrate that both sets of sequences are evolving under similar evolutionary constraints: they do not differ in nucleotide composition, numbers of transition and transversion substitutions, spatial patterns of substitutions, or in rates of divergence. The characteristics and patterns observed in these sequences as well as the secondary structures, are similar to those observed in mt 16S ribosomal DNA sequences from other taxa. Phylogenetic analysis of these sequences shows that they are useful for evaluating relationships within the order. The hypothesis generated from this analysis differs from traditional hypotheses for evolutionary relationships among the Scleractinia and suggests that a reevaluation of evolutionary affinities in the order is needed. Received: 4 September 1996 / Accepted: 7 April 1997  相似文献   

7.
Systematics and Biogeography of Hard Ticks, a Total Evidence Approach   总被引:8,自引:0,他引:8  
Systematic relationships among the basal Ixodidae are examined using one morphological and three molecular data sets, 18S and 28S nuclear and 16S mitochondrial rDNA. Although different combinations of partitions are incompatible in a partition homogeneity test, combining them produces similar or better support for most major lineages through both additive and complementary effects. The different data sets are not complete for all taxa, but inclusion or exclusion of taxa with missing data for one or more data sets (8 of 29 ingroup taxa) does not influence overall tree topology and only weakly affects support levels. The only notable effect was based on gap treatment in the 28S data set. Gap treatment completely changes the arrangement and support levels for one basal node. The combined analyses show strong support for the Metastriata, a lineage including most endemic Australian Ixodes , and a lineage including the remaining Ixodes , but not for the Prostriata (= Ixodes s.l.). The distribution pattern of endemic Australian taxa (nearly all included in three exclusively Australian basal lineages) suggests that these lineages, and by extension the Ixodidae, originated after the isolation of Australia in the late Cretaceous, much more recently than previously indicated.  相似文献   

8.
Euscorpius tergestinus (C.L. Koch, 1837), Euscorpius concinnus (C.L. Koch, 1837) and Euscorpius sicanus (C.L. Koch, 1837), three presumed closely related species belonging to the "carpathicus group", occur in the Italian peninsula with a largely parapatric distribution and some zones of range overlap. These areas of sympatry represent interesting opportunities to investigate species boundaries in natural populations. Here we report on a study exploring genetic variation in sympatric populations of the three species from central Tuscany. Additional collecting sites, from different localities across Italy, were also included in the analysis in order to explore the phylogeographic structure of the group. Species boundaries and evolutionary relationships were examined by sequence comparison of mitochondrial 16S rRNA and nuclear ITS-1 rRNA gene fragments. DNA sequence data show no evidence of genetic introgression between different evolutionary lineages from the area of range overlap, suggesting the absence of either past or ongoing inter-specific gene flow. It is therefore probable that reproductive barriers exist, preventing gene pools from amalgamating. Furthermore, our results support the recent morphological distinction of E. tergestinus, as traditionally classified, into two different species: E. tergestinus and E. concinnus. Both mitochondrial and nuclear sequence data clearly indicate that the two taxa represent well-supported and deeply divergent lineages. Euscorpius sicanus seems to represent a monophyletic taxon, but the high genetic variability observed within this taxon calls for future investigation. The present distribution patterns across the Italian peninsula were mainly interpreted as the consequence of climatic oscillations.  相似文献   

9.
We used mitochondrial/nuclear gene sequence analyses to determine the historical relationships of the endemic species of Todus (Aves: Todidae) from the Caribbean. We collected 1920-bp of nucleotide sequence data from the mitochondrial genes cytochrome b, ATPase 6, ATPase 8, and 591-bp of the single-copy nuclear gene c-mos for all Todus species and representatives of their outgroup taxa (Hylomanes, Barypthengus, Chloroceryle, Ceryle, and Galbula) to reconstruct the evolutionary history (via parsimony and maximum likelihood) of the five Todus species. The substitution rates among the mitochondrial genes were found to be much higher than the substitution rate for the c-mos gene, consequently resulting in higher substitutional saturation for the mitochondrial genes. When we applied weighting schemes to account for the variance in substitutional heterogeneity among the genes then parsimony and likelihood analyses both demonstrate that the genus Todus is monophyletic and closer to the Hylomanes and Barypthengus genera than the Chloroceryle and Ceryle genera. The mitochondrial-gene trees and nuclear-gene trees both show similar results, thus providing support for the relationships among the taxa from loci within two independently evolving genomes. The nuclear gene c-mos was found, therefore, to be a viable nuclear gene candidate for resolving intermediate and deep divergences.  相似文献   

10.
Interspecific morphological variation in animal genitalia has long attracted the attention of evolutionary biologists because of the role genital form may play in the generation and/or maintenance of species boundaries. Here we examine the origin and evolution of genital variation in rodents of the muroid genus Neotoma. We test the hypothesis that a relatively rare genital form has evolved only once in Neotoma. We use four mitochondrial and four nuclear markers to evaluate this hypothesis by establishing a phylogenetic framework in which to examine genital evolution. We find intron seven of the beta-fibrinogen gene to be a highly informative nuclear marker for the levels of differentiation that characterize Neotoma with this locus evolving at a rate slower than cytochrome b but faster than 12S. We estimate phylogenetic relationships within Neotoma using both maximum parsimony and maximum likelihood-based Bayesian methods. Our Bayesian and parsimony reconstructions differ in significant ways, but we show that our parsimony analysis may be influenced by long-branch attraction. Furthermore, our estimate of Neotoma phylogeny remains consistent across various data partitioning strategies in the Bayesian analyses. Using ancestral state reconstruction, we find support for the monophyly of taxa that possess the relatively rare genital form. However, we also find support for the independent evolution of the common genital form and discuss possible underlying developmental shifts that may have contributed to our observed patterns of morphological evolution.  相似文献   

11.
Inferring the evolutionary history of a group of species can be challenging given the many factors involved. In recent years, the increased availability of sequences of multiple genes per species has spurred the development of new methodologies to analyse multilocus data sets. Two approaches that analyse such data are concatenated supermatrix and coalescent-based species-tree analyses. In this study, we used both of these methods to infer the phylogenetic relationships of Iberian species of the genus Squalius from one mitochondrial and six nuclear genes. We found mitonuclear discordance in the phylogenetic relationships of the group. According to the mitochondrial gene analysis, all species were recovered as monophyletic except S. pyrenaicus; besides, in the concatenated supermatrix analysis of the nuclear markers, this species resolved as polyphyletic with three divergent evolutionary lineages. The coalescent-based nuclear species-tree analysis rendered a well-resolved phylogeny compared with the supermatrix analysis, which was unable to discern between S. carolitertii, S. castellanus and one of the evolutionary lineages of S. pyrenaicus. This result is likely due to the better integration of population uncertainty in the coalescent approach. Furthermore, Bayesian multilocus species delimitation analyses based on a BPP approach strongly supported the distinct nuclear lineages as different species. Nevertheless, the supermatrix analysis was able to obtain well-supported relationships in the divergent lineages with low numbers of individuals. Our study highlights the usefulness of different analytical methodologies to obtain a more complete picture of the evolutionary history of taxa, especially when discordant patterns among genes are found.  相似文献   

12.
Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage.  相似文献   

13.
Modern hard corals (Class Hexacorallia; Order Scleractinia) are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia) might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families) and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b), with analyses of nuclear genes (ss-tubulin, ribosomal DNA) of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.  相似文献   

14.
Molecular and biochemical genetic analyses have revealed that many marine invertebrate taxa, including some well-studied and presumably cosmopolitan species, are actually complexes of sibling species. When morphological differences are slight and estimated divergence times are old, data suggest either unusually high rates of sequence evolution or long-term morphological stasis. Here, five gene regions (mitochondrial cytochrome oxidase subunit I and large-subunit ribosomal 16S rDNA and nuclear ITS1, 5.8S rDNA, and ITS2) were analyzed in four geographic samples of the meiobenthic harpacticoid copepod Cletocamptus deitersi. Molecular sequences revealed four extremely differentiated molecular lineages with unalignable nuclear intergenic spacers and mitochondrial uncorrected divergences reaching 25% (cytochrome oxidase) and 36% (16S rDNA). These levels of divergence are greater than those reported previously for congeneric species in diverse invertebrate taxa, including crustaceans. The nominally intraspecific divergence matches or exceeds the corresponding divergence from a known congener (Cletocamptus helobius). A molecular clock applied to the cytochrome oxidase subunit I data suggests that these lineages split in the Miocene, consistent with the fossil record of a North American Cletocamptus from the same period. Morphological differences among the major lineages are subtle but congruent with the patterns of genetic differentiation. Our conclusion, based on concordant patterns of variation in two mitochondrial and three nuclear gene regions, as well as morphological observations, is that C. deitersi in North America is composed of at least four separate species by the genealogical concordance, phylogenetic, and morphological-species criteria. Alternative explanations for the deep phylogenetic nodes and apparent morphological stasis, including high rates of sequence evolution, balancing selection, and genetic signatures of historical events, are considered unlikely.  相似文献   

15.
16.
Arenicolids comprise a group of four genera in which about 30 nominal species are described. Whereas the biology of many arenicolids is well known, the phylogenetic relationships of these worms are inadequately studied. A close relationship of Arenicolidae and Maldanidae is generally accepted. The phylogenetic relationships of arenicolid taxa were reconstructed based on sequence data of the mitochondrial 16S rRNA gene, the nuclear 18S rRNA gene, and a small fraction of the nuclear 28S rRNA gene. Members of all described arenicolid genera are included in the data set. Phylogenetic analyses were conducted using Maximum Likelihood, Bayesian inference, and Maximum Parsimony. The monophyly of the Maldanidae, as well as of the Arenicolidae is supported by all conducted analyses. Two well supported major clades are highest ranked sister taxa in the Arenicolidae: one containing all Abarenicola species and one containing Arenicola, Arenicolides, and Branchiomaldane. Evidence is given for a closer relationship between the two investigated Branchiomaldane species and Arenicolides ecaudata in the combined analysis. In the light of the molecular data the best explanation for structural and morphological observations is that Branchiomaldane evolved by progenesis.  相似文献   

17.
The monophyly of Sabellidae, the phylogenetic relationships of its lineages, and the composition of Sabellida have been debated for many decades. Most studies on sabellid phylogeny have focused on morphological features but little DNA work has been published to date. We performed analyses using maximum‐parsimony methods that included 36 sabellids and members of previously related taxa. We integrated morphological and DNA sequence data to resolve relationships at different hierarchical levels (135 morphological features, fragments of the nuclear ribosomal RNA genes 18S and 28S, and the mitochondrial gene 16S). The results indicate the monophyly of Sabellida, including Sabellidae and Serpulidae. Monophyly of Fabriciinae and Serpulidae is assessed and the two groups are recovered as sister taxa, but with weak support. There is no significant support for the monophyly of Sabellinae. Relationships between members of the Sabellidae are still partially unresolved due to incongruence between partitions and low support for most clades. The evolution and transformation of certain characters within Sabellidae is explored.
© The Willi Hennig Society 2010.  相似文献   

18.
The oceanic squid family Gonatidae (Mollusca: Cephalopoda) is widely distributed in subpolar and temperate waters, exhibiting behavioral and physiological specializations associated with reproduction. Females of several species undergo muscular degeneration upon maturation; origins of this complex morphogenic change are unknown, hindering our understanding of ecological and morpho-physiological adaptations within the family. To provide further information regarding the evolutionary relationships within Gonatidae, three mitochondrial loci (12S rRNA, 16S rRNA, and cytochrome c oxidase subunit I) were analyzed for 39 individuals representing fourteen gonatid and six outgroup cephalopod species. In addition to elucidating relationships among gonatids, molecular data provided more information than morphological data for problematic specimens. Although some data sets are incongruent or have low nodal support values, combined molecular analysis confirms the presence of gonatid groups previously established by morphological characteristics (i.e., possessing radular teeth in seven longitudinal rows and muscular mantle tissue). These characteristics are basal to taxa possessing radular teeth in five longitudinal rows and less muscular mantle tissue, indicating that the derived forms are those species exhibiting physiological adaptation such as tissue degeneration upon maturation and egg brooding.  相似文献   

19.
The present study evaluates the evolutionary framework of the Old World fruitbats based on the cytochrome b and 16S rRNA mitochondrial gene sequences from a wide range of taxa. Phylogenetic analyses indicated that morphology-based subfamilies and most suprageneric groups are nonnatural assemblages. They also support the existence of an endemic African clade of fruitbats. The discrepancy between the evolutionary relationships yielded by molecular and morphological data sets may be, at least in part, explained by the recurrent retention of primitive morphology (Rousettus-like) across different lineages. The maintenance of primitive characters in different groups of flying foxes, as well as morphological convergence in nectar-feeding bats and possibly also in short-muzzle bats, may have led to high levels of homoplasy, resulting in misleading taxonomic arrangements. This may be particularly so with respect to high taxonomic levels based on morphological characters.  相似文献   

20.
Molecular phylogenetics has benefited tremendously from the advent of next‐generation sequencing, enabling quick and cost‐effective recovery of whole mitogenomes via an approach referred to as ‘genome skimming’. Recently, genome skimming has been utilised to recover highly repetitive nuclear genes such as 18S and 28S ribosomal RNA genes that are useful for inferring deeper evolutionary relationships. To address some outstanding issues in the relationships among Northern Hemisphere freshwater crayfish (Astacoidea), we sequenced the partial genome of crayfish species from Asian, North American and European genera and report the successful recovery of whole mitogenome sequences in addition to three highly repetitive nuclear genes, namely histone H3, 18S and 28S ribosomal RNA. Consistent with some previous studies using short mtDNA and nuclear gene fragments, phylogenetic analyses based on the concatenation of recovered mitochondrial and/or nuclear sequences recovered the Asian cambarid lineage as basal to all astacids and North American cambarids, which conflicts with the current taxonomic classification based on morphological and reproduction‐related characters. Lastly, we show that complete H3, 18S and 28S ribosomal RNA genes can also be consistently recovered from a diverse range of animal taxa, demonstrating the potential wide utility of genome skimming for nuclear markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号