首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular epiphytes are a conspicuous and highly diverse group in tropical wet forests; yet, we understand little about their mineral nutrition across sites. In this study, we examined the mineral nutrition of three dominant vascular epiphyte groups: ferns, orchids, and bromeliads, and their host trees from samples collected along a 2600 m elevational gradient in the tropical wet forests of Costa Rica. We predicted that the mineral nutrition of ferns, orchids, and bromeliads would differ because of their putative differences in nutrient acquisition mechanisms and nutrient sources—atmospherically dependent, foliar feeding bromeliads would have lower nitrogen (N) and phosphorous (P) concentrations and more depleted δ15N values than those in canopy soil-rooted ferns because canopy soil is higher in available N, and more enriched in δ15N than the atmospheric sources of precipitation and throughfall. We also predicted that epiphyte foliar chemistry would mirror that of host trees because of the likely contribution of host trees to the nutrient cycle of epiphytes via foliar leaching and litter contributions to canopy soil. In the same vein, we predicted that epiphyte and host tree foliar chemistry would vary with elevation reflecting ecosystem-level nutrients—soil N availability increases and P availability decreases with increasing elevation. Our results confirmed that canopy soil-rooted epiphytes had higher N concentrations than atmospheric epiphytes; however, our predictions were not confirmed with respect to P which did not vary among groups indicating fixed P availability within sites. In addition, foliar δ15N values did not match our prediction in that canopy soil-rooted as well as atmospheric epiphytes had variable signatures. Discriminant function analysis (DFA) on foliar measurements determined that ferns, orchids, and bromeliads are statistically distinct in mineral nutrition. We also found that P concentrations of ferns and orchids, but not bromeliads, were significantly correlated with those of host trees indicating a possible link in their mineral nutrition’s via canopy soil. Interestingly, we did not find any patterns of epiphyte foliar chemistry with elevation. These data indicate that the mineral nutrition of the studied epiphyte groups are distinct and highly variable within sites and the diverse uptake mechanisms of these epiphyte groups enhance resource partitioning which may be a mechanism for species richness maintenance in tropical forest canopies.  相似文献   

2.
The natural 15N abundance (δ15N) of epiphytes and its N sources were studied in the canopy of a lowland rainforest in Costa Rica. Vascular and non‐vascular epiphytes and canopy soils were collected from four canopy zones and analysed for N contents and δ15N signals. In addition, the N concentrations and δ15N signatures of bulk precipitation, throughfall and stemflow were measured during the wet and the dry season. The δ15N values of epiphyte leaves decreased significantly from the lower zones (means of ?3·9 and ?4·3‰) to the upper zones (means of ?5·4 and ?6·1‰) of the canopy. In contrast, δ15N signatures of canopy soils (average ?0·3‰) differed little between the zones. Bulk deposition was enriched in 15N (+4·3‰) compared to all other potential N sources and was higher than throughfall and stemflow (+0·5 to ?1·3‰). δ15N values of atmospheric deposition were inversely related to those of the epiphyte leaves, whereas N isotopic composition of canopy soils did not vary significantly. Consequently, it is concluded that the variations in foliar N isotope composition of epiphytes were not simply caused by utilization of isotopically different N sources, but by different 15N discrimination during N acquisition.  相似文献   

3.
Abstract: While atmospheric species of bromeliads have narrow leaves, densely covered with water‐absorbing trichomes throughout their life cycles, many tank bromeliads with broad leaves, forming phytotelmata, go through an atmospheric juvenile phase. The effect of the different habits and the phase change in tank‐forming bromeliads on water and nutrient relations was investigated by analysing the relationship between plant size, C/N ratios and the natural abundance of 13C and 15N in five epiphytic bromeliad species or morphospecies of a humid montane forest in Xalapa, Mexico. The atmospheric species Tillandsia juncea and T. butzii exhibited full crassulacean acid metabolism, with δ13C values (mean ‐ 15.3 ‰ and ‐ 14.7 ‰, respectively) independent of size. In Tillandsia species with C3 photosynthesis, δ13C decreased with increasing plant size, indicating stronger drought stress in juveniles. The increase of the C/N ratio with size suggests that, at least in heteroblastic bromeliads, the availability of water is more limiting during early growth, and that limitations of nitrogen supply become more important later on, when water stored in the tank helps to bridge dry periods, reducing water shortage. δ15N values of the two atmospheric species were very negative (‐ 12.6 ‰ and ‐ 12.2 ‰, respectively) and did not change with plant size. Tank‐forming bromeliads had less negative δ15N values (c ‐ 6 ‰), and, in species with atmospheric juveniles and tank‐forming adults, δ15N values increased significantly with plant size. These differences do not appear to be an effect of the isotopic composition of N sources, but rather reflect N availability and limitation and stress‐induced changes in 15N discrimination.  相似文献   

4.
The foliar natural abundance of 15N was analysed to compare the potential nitrogen sources of vascular rainforest epiphytes and associated soil-rooted trees. Leaves of epiphytes collected from six rainforest communities in Brazil, Australia and the Solomon Islands were depleted in 15N relative to the trees at each site. Epiphyte δ15N was as low as -6.4%o, while trees were generally enriched in 15N (0.7 to 3.5%o). These results indicate either that epiphytes use nitrogen sources depleted in 15N or that discrimination against 15N is an intrinsic function of epiphyte physiology. At three sites, epiphytes could be grouped into those having both low δ15N and low leaf-nitrogen content and those possessing both high δ15N and high leaf-nitrogen content. The second group had δ15N values in the range sometimes attributable to N2 fixation (-2 to 0%o). There was no correlation between growth form and δ15N. It is concluded that epiphytes may utilize 15N-depleted nitrogen from atmospheric deposition and N2 fixation.  相似文献   

5.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

6.
Samples of recently produced shoot material collected in winter/spring from common plant species of mulga vegetation in eastern and Western Australia were assayed for 13C and 15N natural abundance. 13C analyses showed only three of the 88 test species to exhibit C4 metabolism and only one of seven succulent species to be in CAM mode. Non-succulent winter ephemeral C3 species showed significantly lower mean δ13C values (– 28·0‰) than corresponding C3-type herbaceous perennials, woody shrubs or trees (– 26·9, – 25·7 and – 26·2‰, respectively), suggesting lower water stress and poorer water use efficiency in carbon acquisition by the former than latter groups of taxa. Corresponding values for δ15N of the above growth and life forms lay within the range 7·5–15·5‰. δ15N of soil NH4+ (mean 19·6‰) at a soft mulga site in Western Australia was considerably higher than that of NO3 (4·3‰). Shoot dry matter of Acacia spp. exhibited mean δ15N values (9·10 ± 0·6‰) identical to those of 37 companion non-N2-fixing woody shrubs and trees (9·06 ± 0·5‰). These data, with no evidence of nodulation, suggested little or no input of fixed N2 by the legumes in question. However, two acacias and two papilionoid legumes from a dune of wind-blown, heavily leached sand bordering a lake in mulga in Western Australia recorded δ15N values in the range 2·0–3·0‰ versus 6·4–10·7‰ for associated non-N2-fixing taxa. These differences in δ15N, and prolific nodulation of the legumes, indicated symbiotic inputs of fixed N in this unusual situation. δ15N signals of lichens, termites, ants and grasshoppers from mulga of Western Australia provided evidence of N2 fixation in certain termite colonies and by a cyanobacteria-containing species of lichen. Data are discussed in relation to earlier evidence of nitrophily and water availability constraints on nitrate utilization by mulga vegetation.  相似文献   

7.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research.  相似文献   

8.
Southern African forests are naturally fragmented yet hold a disproportionately high number of bird species. Carbon and nitrogen stable isotopes were measured in feathers from birds captured at Woodbush (n = 27 species), a large afromontane forest in the eastern escarpment of Limpopo province, South Africa. The δ13C signatures of a range of forest plants were measured to categorise the food base. Most plants sampled, including two of five grass species, had δ13C signatures typical of a C3 photosynthetic pathway (?29.5 ± 1.9‰). Three grass species had a C4 signature (?12.0 ± 0.6‰). Most bird species had δ13C values representing a predominantly C3‐based diet (?24.8‰ to ?20.7‰). δ15N values were as expected, with higher levels of enrichment associated with a greater proportion of dietary animal matter. The cohesive isotopic niche defining most species (n = 22), where the ranges for δ13C and δ15N were 2.4‰ and 3.4‰, respectively, highlight the difficulties in understanding diets of birds in a predominantly C3‐based ecosystem using carbon and nitrogen stable isotopes. However, variation in isotopic values between and within species provides insight into possible niche width and the use of resources by different birds within a forest environment.  相似文献   

9.

Background and aims

The aim of this study is to enhance our knowledge of nitrogen (N) cycling and N acquisition in tropical montane forests through analysis of stable N isotopes (δ15N).

Methods

Leaves from eight common tree species, leaf litter, soils from three depths and roots were sampled from two contrasting montane forest types in Jamaica (mull ridge and mor ridge) and were analysed for δ15N.

Results

All foliar δ15N values were negative and varied among the tree species but were significantly more negative in the mor ridge forest (by about 2 ‰). δ15N of soils and roots were also more negative in mor ridge forests by about 3 ‰. Foliar δ15N values were closer to that of soil ammonium than soil nitrate suggesting that trees in these forests may have a preference for ammonium; this may explain the high losses of nitrate from similar tropical montane forests. There was no correlation between the rankings of foliar δ15N in the two forest types suggesting a changing uptake ratio of different N forms between forest types.

Conclusions

These results indicate that N is found at low concentrations in this ecosystem and that there is a tighter N cycle in the mor ridge forest, confirmed by reduced nitrogen availability and lower rates of nitrification. Overall, soil or root δ15N values are more useful in assessing ecosystem N cycling patterns as different tree species showed differences in foliar δ15N between the two forest types.  相似文献   

10.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

11.
The restinga comprises coastal vegetation formations which dominate the Atlantic seaboard of Brazil. Exposed sand ridges and associated lagoon systems have poorly developed soils subject to pronounced water deficits. Distinct vegetation zones support a high diversity of life forms, and a comparative study has been undertaken to investigate interactions between degree of exposure, nutrient supply and photosynthetic pathway (C3, or CAM) in selected species across the restinga. A number of species occurring throughout the restinga were chosen as representative species of different life forms, comprising C3 pioneer shrubs (Eugenia rotundifolia and Erythroxylum ovalifolium), impounding (tank) terrestrial bromeliad (Neoregelia cruenta: CAM) and the atmospheric epiphyte (Tillandsia stricta: CAM). Comparisons of plant and soil nutrient composition, and airborne deposition were conducted for each zone. Soil nutrient content and organic matter were closely related, reaching a maximum in zone 4, the seaward face of the inner dune. Salt concentration in leaves was independent of atmospheric deposition for the terrestrial species, in contrast to the atmospheric epiphyte T. stricta. In the slack area, vegetation formed characteristic “islands” with the soil beneath enriched in nutrients, suggesting a complex interplay between plants and soil during the development of vegetation succession. Here, two additional trees were investigated, C3 and CAM members of the Clusiaceae, respectively Clusia lanceolata and C. fluminensis. Stable isotope composition of nitrogen (δ15N) was generally more negative (depleted in 15N) in plants with low total nitrogen content. This was exemplified by the atmospheric bromeliad, T. stricta, with an N content of 2.91 g/kg and δ15N of ?12.3 per mil. Stable isotopes of carbon (δ13C) were used to identify the distribution of photosynthetic pathways, and while the majority of bromeliads and orchids were CAM, analysis of the soil organic matter suggested that C3 plants made the major contribution in each zone of the restinga. Since δ13C of plant material also suggested that water supply was optimal in zone 4, we conclude that succession and high diversity in the restinga is dependent on exposure, edaphic factors, and perhaps a critical mass of vegetation required to stabilize nutrient relations of the system.  相似文献   

12.
Abstract. Vascular epiphytes were studied in forests at altitudes from 720 to 2370 m on the Atlantic slope of central Veracruz, Mexico. The biomass of all trees of each species > 10 cm diameter at breast height within plots between 625 and 1500 m2 was estimated. The number of species per plot ranged between 22 and 53, and biomass between 9 and 249 g dry weight/m2. The highest values, both of species and biomass, were found at an intermediate altitude (1430 m). Habitat diversity may contribute to epiphyte diversity in humid forests, but the importance of this effect could not be distinguished from the influence of climate. A remarkably high number of bromeliads and orchids grew in relatively dry forests at low altitudes. In wet upper montane forests, bromeliads were replaced by ferns, while orchids were numerous at all sites, except for a pine forest. The number of epiphytic species and their biomass on a tree of a given site were closely related to tree size. According to Canonical Correspondence Analysis, the factor determining the composition of the epiphytic vegetation of a tree was altitude and to some extent tree size, whereas tree species had practically no influence. The only trees which had an evidently negative effect on epiphytes were pines, which were particularly hostile to orchids and to a lesser degree to ferns, and Bursera simaruba, which generally had few epiphytes due to its smooth and defoliating bark.  相似文献   

13.
Foliar nitrogen isotope (δ15N) composition patterns have been linked to soil N, mycorrhizal fractionation, and within-plant fractionations. However, few studies have examined the potential importance of the direct foliar uptake of gaseous reactive N on foliar δ15N. Using an experimental set-up in which the rate of mycorrhizal infection was reduced using a fungicide, we examined the influence of mycorrhizae on foliar δ15N in potted red maple (Acer rubrum) seedlings along a regional N deposition gradient in New York State. Mycorrhizal associations altered foliar δ15N values in red maple seedlings from 0.06 to 0.74 ‰ across sites. At the same sites, we explored the predictive roles of direct foliar N uptake, soil δ15N, and mycorrhizae on foliar δ15N in adult stands of A. rubrum, American beech (Fagus grandifolia), black birch (Betula lenta), and red oak (Quercus rubra). Multiple regression analysis indicated that ambient atmospheric nitrogen dioxide (NO2) concentration explained 0, 69, 23, and 45 % of the variation in foliar δ15N in American beech, red maple, red oak, and black birch, respectively, after accounting for the influence of soil δ15N. There was no correlation between foliar δ13C and foliar %N with increasing atmospheric NO2 concentration in most species. Our findings suggest that total canopy uptake, and likely direct foliar N uptake, of pollution-derived atmospheric N deposition may significantly impact foliar δ15N in several dominant species occurring in temperate forest ecosystems.  相似文献   

14.
Abstract An investigation was carried out into the water relations of CAM and C3 bromeliads in their natural habitat during the dry season in Trinidad. Measurements were made of xylem tension with the pressure chamber and of cell-sap osmotic pressure and titratable acidity on crushed leaf samples. A steady-state CO2 and H2O-vapour porometer was also used so that changes in leaf water relations during individual day-night cycles could be directly related to gas-exchange patterns in situ. Xylem tension changed in parallel with transpiration rate and in general reached its maximum value in CAM bromeliads at night and in C3 bromeliads during the day. In addition, large nocturnal increases in cell-sap osmotic pressure and titratable acidity (ΔH+) typically occurred in the CAM bromeliads. The C3-CAM intermediate Guzmania monostachia showed slight nocturnal acidification, but had higher values of xylem tension during the day. Very high values of AH+ were observed in the CAM species when the tanks of the epiphytic bromeliads contained water: Aechmea nudicaulis showed a mean maximum ΔH+ of 474 mol m?3, the highest value so far observed for CAM plants. On some nights dew formed on the leaf surfaces of the epiphytes, partially curtailing gas exchange and leading to a marked decrease in xylem tension in both C3 and CAM species. Between-site comparisons were also made for a wide range of habitats from arid coastal scrub to montane rain forest. Compared with values characteristic of other life-forms, xylem tension and cell-sap osmotic pressure were low for all bromeliads, and did not differ significantly in co-occurring CAM and C3 bromeliads. Mean maximum xylem tension (10 species in total) ranged from 0.29 M Pa at the montane sites to 0.67 MPa at the most arid site, and mean minimum osmotic pressure (17 species) from 0.51 to 0.97 MPa. At the arid sites the bromeliads were exclusively CAM species, two of which (Aechmea aquilega and Bromelia plumieri) grew terrestrially in the undergrowth of the coastal scrub. Xylem tension in these species was low enough to indicate that they must be functionally independent of the substratum during the dry season. In the wetter part of Trinidad, no between-site differences in leaf water relations were found along an altitudinal gradient in the Northern Mountain Range; seasonal differences in this area were also small. Overall, leaf water relations and gas exchange in the bromeliads were strongly affected both by short-term changes in water availability and by longer-term climatic differences in the various regions of the island.  相似文献   

15.
Summary The occurrence of Crassulacean acid metabolism (CAM), as judged from 13C values, was investigated in epiphytes and some related plant species at a series of sites covering the approximate altitudinal range of epiphytes in Papua New Guinea. Comprehensive collections were made at each site and the occurrence of water storage tissue and blade thickness was also determined. Some 26% of epiphytic orchids from a lowland rainforest (2–300 m.a.s.l) showed 13C values typical of obligate CAM and possessed leaves thicker than 1 mm. A second group of orchids, mostly with succulent leaves, possessed intermediate 13C values between -23 and -26% and accounted for 25% of the total species number. Some species of this group may exhibit weak CAM or be facultative CAM plants. The remainder of the lowland rainforest species appeared to be C3 plants with 13C values between -28 and -35%. and generally possessed thin leaves. Obligate CAM species of orchids from a lower montane rainforest (1175 m.a.s.l) comprised 26% of the species total and mostly possessed thick leaves. The remainder of the species were generally thin-leaved with 13C values between -26 and -35%. largely indicative of C3 photosynthesis. Orchids with intermediate 13C values were not found in the lower montane rainforest. Obligate CAM appeared to be lacking in highland epiphytes from an upper montane rainforest and subalpine rainforest (2600–3600 m.a.s.l). However the fern, Microsorium cromwellii had a 13C value of -21.28%. suggesting some measure of CAM activity. Other highland ferns and orchids showed more negative °13C values, up to-33%., typical of C3 photosynthesis. The highland epiphytic orchids possessed a greater mean leaf thickness than their lowland C3 counterparts due to the frequent occurrence of water storage tissue located on the adaxial side of the leaf. It is suggested that low daytime temperatures in the highland microhabitats is a major factor in explaining the absence of CAM. The increased frequency of water storage tissue in highland epiphytes may be an adaptation to periodic water stress events in the dry season and/or an adaptation to increased levels of UV light in the tropicalpine environment.  相似文献   

16.
Abstract Field measurements of the gas exchange of epiphytic bromeliads were made during the dry season in Trinidad in order to compare carbon assimilation with water use in CAM and C3 photosynthesis. The expression of CAM was found to be directly influenced by habitat and microclimate. The timing of nocturnal CO2 uptake was restricted to the end of the dark period in plants found at drier habitats, and stomatal conductance in two CAM species was found to respond directly to humidity or temperature. Total night-time CO2 uptake, when compared with malic-acid formation (measured as the dawn-dusk difference in acidity, ΔH+), could only account for 10–40% of the total ΔH+ accumulated. The remaining malic acid must have been derived from the refixation of respired CO2 (recycling). Within the genus Aechmea (12 samples from four species), recycling was significantly correlated with night temperature at the six sample sites. Recycling was lowest in A. fendleri (54% of ΔH+ derived from respired CO2), a CAM bromeliad with little water-storage parenchyma that is restricted to wetter, cooler regions of Trinidad. Gas-exchange rates of C3 bromeliads were found to be similar to those of the CAM bromeliads, with CO2 uptake from 1 to 3 μmol m?2 s?1 and stomatal conductances generally up to 100 mmol m?2 s?1. The midday depression of photosynthesis occurred in exposed habitats, although photosynthetically active radiation (PAR) limited photosynthesis in shaded habitats. CO2 uptake of the C3 bromeliad Guzmania lingulata was saturated at around 500 μmol m?2 s?1 PAR, suggesting that epiphytic plants found in the shaded forest understorey are shade-tolerant rather than shade-demanding. Transpiration ratios (TR) during CO2 fixation in CAM (Phase I and IV) and C3 bromeliads were compared at different sites in order to assess the efficiency of water utilization. For the epiphytes displaying marked uptake of CO2, TR were found to be lower than many previously published values. In addition, the average TR values were very similar for dark CO2 uptake in CAM (42 ± 41, n= 12), Phase IV of CAM (69 ± 36, n= 3) and for C3 photosynthesis (99 ± 73, n= 4) in these plants. It appears that recycling of respired CO2 by CAM bromeliads and efficient use of water in all phases of CO2 uptake are physiological adaptations of bromeliads to arid microclimates in the humid tropics.  相似文献   

17.
Wanek W  Zotz G 《The New phytologist》2011,192(2):462-470
Although there is unambiguous evidence for vascular epiphytic plants to be limited by insufficient water and nutrient supply under natural conditions, it is an open debate whether they are primarily phosphorus (P) or nitrogen (N) limited. Plant (15) N fractionation and foliar N : P stoichiometry of a tank epiphyte (Vriesea sanguinolenta), and its response to combined N-P fertilization, were studied under semi-natural conditions over 334 d to clarify the type of nutrient limitation. Plants collected in the field and experimental plants with limited nutrient supply showed significant plant (15) N fractionation (mean 5‰) and plant N : P ratios of c. 13.5. Higher relative growth rates and declines in plant (15) N fractionation (0.5‰) and in foliar N : P ratios to 8.5 in the high N-P treatment indicated that these epiphytes were P limited in situ. The critical foliar N : P ratio was 10.4, as derived from the breakpoint in the relationship between plant (15) N fractionation and foliar N : P. We interpret the widespread (15) N depletion of vascular epiphytes relative to their host trees as deriving from (15) N fractionation of epiphytes as a result of P limitation. High foliar N : P ratios (> 12) corroborate widespread P limitation (or co-limitation by N and P) of epiphytic bromeliads and, possibly, other epiphyte species.  相似文献   

18.
During the last century, the global biogeochemical cycles of carbon (C) and nitrogen (N) have been drastically altered by human activities. A century of land‐clearing and biomass burning, followed by fossil fuel combustion have increased the concentration of atmospheric CO2 by approximately 20%, and since the mid‐1900s, the use of agricultural fertilizers has been the primary driver of an approximate 90% increase in bioavailable N. Geochemical records obtained through stable isotope analysis of terrestrial and marine biota effectively illustrate rising anthropogenic C inputs. However, there are fewer records of anthropogenic N, despite the enormous magnitude of change and the known negative effects of N on ecosystem health. We used stable isotope values from independent octocorals (gorgonians) sampled across the Western Atlantic over the last 143 years to document human perturbations of the marine C and N pools. Here, we demonstrate that in sea plumes δ13C values and in both sea plumes and sea fans δ15N values declined significantly from 1862 to 2005. Sea plume δ 13C values were negatively correlated with increasing atmospheric CO2 concentrations and corroborate known rates of change resulting from global fossil fuel combustion, known as the Suess effect. We suggest that widespread input of agricultural fertilizers to near‐shore coastal waters is the dominant driver for the decreasing δ 15N trend, though multiple anthropogenic sources are likely affecting this trend. Given the interest in using δ 15N as an indicator for N pollution in aquatic systems, we highlight the risk of underestimating contributions of pollutants as a result of source mixing as demonstrated by a simple isotope‐mixing model. We conclude that signals of major human‐induced perturbations of the C and N pools are detectable in specimens collected over wide geographic scales, and that archived materials are invaluable for establishing baselines against which we can assess environmental change.  相似文献   

19.
Understanding forest carbon cycling responses to atmospheric N deposition is critical to evaluating ecosystem N dynamics. The natural abundance of 15N (??15N) has been suggested as an efficient and non-invasive tool to monitor N pools and fluxes. In this study, three successional forests in southern China were treated with four levels of N addition. In each treatment, we measured rates of soil N mineralization, nitrification, N2O emission and inorganic N leaching as well as N concentration and ?? 15N of leaves, litters and soils. We found that foliar N concentration and ??15N were higher in the mature broadleaf forest than in the successional pine or mixed forests. Three-year continuous N addition did not change foliar N concentration, but significantly increased foliar ?? 15N (p < 0.05). Also, N addition decreased the ?? 15N of top soil in the N-poor pine and mixed forests and significantly increased that of organic and mineral soils in N-rich broadleaf forests (p < 0.05). In addition, the soil N2O emission flux and inorganic N leaching rate increased with increasing N addition and were positively correlated with the 15N enrichment factor (?? p/s) of forest ecosystems. Our study indicates that ?? 15N of leaf, litter and soil integrates various information on plant species, forest stand age, exogenous N input and soil N transformation and loss, which can be used to monitor N availability and N dynamics in forest ecosystems caused by increasing N deposition in the future.  相似文献   

20.
Studies of uptake of ionic sources of N by two hydroponically grown rice (Oryza sativa L.) cultivars (paddy‐field‐adapted Koshihikari and dryland‐adapted Kanto 168) showed that the magnitude of the nitrogen isotope fractionation (?) for uptake of NH4+ depended on the concentrations of NH4+ and cultivar (averaging –6·1‰ for Koshihikari and –12·0‰ for Kanto 168 at concentrations from 40 to 200 mmol m?3 and, respectively, –13·4 and –28·9‰ for the two cultivars at concentrations from 0·5 to 4 mol m?3). In contrast, the ? for uptake of NO3? in similar experiments was almost insensitive to the N concentration, falling within a much narrower range (+3·2‰ to –0·9‰ for Koshihikari and –0·9‰ to –5·1‰ for Kanto 168 over NO3? concentrations from 0·04 to 2 mol m?3). From longer term experiments in which Norin 8 and its nitrate‐reductase deficient mutant M819 were grown with 2 or 8 mol m?3 NO3? for 30 d, it was concluded that the small concentration‐independent isotopic fractionation during absorption of this ion was not related to nitrate reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号